Главная страница
Навигация по странице:

  • ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)

  • ТТоиР. ТТОиР-реферат-. Реферат по теме Тормозные механизмы и специфика их работы


    Скачать 0.5 Mb.
    НазваниеРеферат по теме Тормозные механизмы и специфика их работы
    АнкорТТоиР
    Дата16.01.2022
    Размер0.5 Mb.
    Формат файлаdoc
    Имя файлаТТОиР-реферат-.doc
    ТипРеферат
    #332047


    М ОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

    ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)

    Заочный факультет

    Дисциплина

    «Техника транспорта, обслуживание и ремонт»

    Реферат

    по теме:

    «Тормозные механизмы и специфика их работы»

    Выполнил:

    Студент группы 3ЗБоПп1

    Проверил преподаватель:

    Москва 2021

    Содержание


    Введение 3

    Классификация и устройство тормозных систем 4

    Основные типы колесных тормозных механизмов 6

    Гидравлический привод тормозов 9

    Гидровакуумный усилитель тормозов 11

    Пневматический привод тормозов 13

    Устройство и работа стояночной, вспомогательной и запасной тормозных систем 15

    Тормозные колодки 17

    Заключение 20

    Список литературы 21


    Введение


    Безопасность движения автомобилей с высокими скоростями в значительной степени определяется эффективностью действия и безопасностью тормозов.

    Эффективность тормозного пути определяется по определенной оценке тормозного пути или временем движения автомобиля до полной остановки. Чем эффективнее действие тормозов, тем выше безопасная скорость, которую может допустить водитель, и тем выше скорость движения автомобиля на всем маршруте.

    Рабочая тормозная система служит для снижения скорости движения автомобиля вплоть до полной его остановки вне зависимости от его скорости, нагрузки и уклонов дороги. Стояночная тормозная система служит для удержания неподвижного автомобиля на горизонтальном участке или уклоне дороги и должна обеспечивать неподвижное состояние снаряженного легкового автомобиля на уклоне 23% включительно.

    Стояночная тормозная система выполняет также функцию аварийной тормозной системы в случае выхода из строя рабочей тормозной системы. Запасная тормозная система предназначена для плавного снижения скорости движения автомобиля до остановки, в случаи отказа полной или частичной рабочей системы; она может быть менее эффективной, чем рабочая тормозная система.

    Вспомогательная система тормозов предназначена для поддержания постоянной скорости автомобиля, при движении его на затяжных спусках горных дорог, с целью снижения нагрузки на рабочею тормозную систему при длительном торможении.

    Гидравлический привод предназначен для передачи усилия водителя через педаль с помощью тормозной жидкости, и состоит из: тормозного главного цилиндра, колесного тормозного цилиндра и соединительных трубок и шлангов, гидровакуумного усилителя и регулятора давления задних тормозов.Торможение необходимо не только для быстрой остановки автомобиля при внезапном появлении препятствий, но и как средство управления скоростью его движения.

    Структура тормозного управления автомобиля и требования, предъявляемые к нему обусловлены ГОСТ-22895-95г. Согласно этому стандарту тормозное управление должно состоять из четырех систем: рабочей, запасной, стояночной и вспомогательной. Системы могут иметь общие элементы, но не менее двух независимых органов управления. Каждая из этих систем включает в себя тормозные механизмы, обеспечивающие создание сопротивления движению автомобиля и тормозной привод, необходимый для управления тормозными механизмами.

    Классификация и устройство тормозных систем


    Эксплуатация любого автомобиля допускается в том случае, если он имеет исправную тормозную систему. Тормозная система необходима на автомобиле для снижения его скорости, остановки и удерживания на месте.

    Тормозная сила возникает между колесом и дорогой по направлению, препятствующему вращению колеса. Максимальное значение тормозной силы на колесе зависит от возможностей механизма, создающего силу торможения, от нагрузки, приходящейся на колесо, и от коэффициента сцепления с дорогой. При равенстве всех условий, определяющих силу торможения, эффективность тормозной системы будет зависеть в первую очередь от особенностей конструкции механизмов, производящих торможение автомобиля.

    На современных автомобилях в целях обеспечения безопасности движения устанавливают несколько тормозных систем, выполняющих различное назначение. По этому признаку тормозные системы подразделяют на:

    - рабочую,

    - запасную,

    - стояночную,

    - вспомогательную.

    Рабочая тормозная система используется во всех режимах движения автомобиля для снижения его скорости до полной остановки. Она приводится в действие усилием ноги водителя, прилагаемым к педали ножного тормоза. Эффективность действия рабочей тормозной системы самая большая по сравнению с другими типами тормозных систем.

    Запасная тормозная система предназначена для остановки автомобиля в случае отказа рабочей тормозной системы. Она оказывает меньшее тормозящее действие на автомобиль, чем рабочая система. Функции запасной системы может выполнять чаще всего исправная часть рабочей тормозной системы или полностью стояночная система.

    Стояночная тормозная система служит для удерживания остановленного автомобиля на месте, чтобы исключить его самопроизвольное трогание (например, на уклоне).

    Управляется стояночная тормозная система рукой водителя через рычаг ручного тормоза.

    Вспомогательная тормозная система используется в виде тормоза-замедлителя на автомобилях большой грузоподъемности (МАЗ, КрАЗ, КамАЗ) с целью снижения нагрузки при длительном торможении на рабочую тормозную систему, например на длинном спуске в горной или холмистой местности.

    Устройство тормозной системы

    В общем виде тормозная система состоит из тормозных механизмов и их привода. Тормозные механизмы при работе системы препятствуют вращению колес, в результате чего между колесами и дорогой возникает тормозная сила, останавливающая автомобиль. Тормозные механизмы (см. рис. 1) 2 размещаются непосредственно на передних и задних колесах автомобиля.

    Тормозной привод передает усилие от ноги водителя на тормозные механизмы. Он состоит из главного тормозного цилиндра 5 с педалью 4 тормоза, гидровакуумного усилителя 1 и соединяющих их трубопроводов 3, заполненных жидкостью.

    Работает тормозная система следующим образом. При нажатии на педаль тормоза поршень главного цилиндра давит на жидкость, которая перетекает к колесным тормозным механизмам. Поскольку жидкость практически не сжимается, то, перетекая по трубкам к тормозным механизмам, она передает усилие нажатия. Тормозные механизмы преобразуют это усилие в сопротивление вращению колес, и наступает торможение. Если педаль тормоза отпустить, жидкость перетечет обратно к главному тормозному цилиндру и колеса растормаживаются. Гидровакуумный усилитель 1 облегчает управление тормозной системой, так как создает дополнительное усилие, передаваемое на тормозные механизмы колес.


    Рис. 1. Схема тормозной системы
    Рассмотренный принцип действия тормозной системы позволяет представить взаимодействие основных элементов тормозной системы, имеющей гидравлический привод. Если в приводе тормозной системы используется сжатый воздух, то такой привод называется пневматическим, если жесткие тяги или металлические тросы - механическим.

    Основные типы колесных тормозных механизмов


    В тормозных системах автомобилей наиболее распространены фрикционные тормозные механизмы, принцип действия которых основан на силах трения вращающихся деталей о не вращающиеся. По форме вращающейся детали колесные тормозные механизмы делят на барабанные и дисковые.

    Барабанный тормозной механизм с гидравлическим приводом (рис. 2 а) состоит из двух колодок 2 с фрикционными накладками, установленных на опорном диске 3. Нижние концы колодок закреплены шарнирно на опорах 5, а верхние упираются через стальные сухари в поршни разжимного колесного цилиндра 1. Стяжная пружина 6 прижимает колодки к поршням цилиндра 1, обеспечивая зазор между колодками и тормозным барабаном 4 в нерабочем положении тормоза. При поступлении жидкости из привода в колесный цилиндр 1 его поршни расходятся и раздвигают колодки до соприкосновения с тормозным барабаном, который вращается вместе со ступицей колеса. Возникающая сила трения колодок о барабан вызывает затормаживание колеса. После прекращения давления жидкости на поршни колесного цилиндра стяжная пружина 11 возвращает колодки в исходное положение и торможение прекращается.

    Рассмотренная конструкция барабанного тормоза способствует неравномерному износу передней и задней по ходу движения колодок. Это происходит в результате того, что при движении вперед в момент торможения передняя колодка работает против вращения колеса и прижимается к барабану с большей силой, чем задняя. Поэтому, чтобы уравнять износ передней и задней колодок, длину передней накладки делают больше, чем задней, или рекомендуют менять местами колодки через определенный срок.



    Рис. 2. Колесный барабанный тормозной механизм

    В другой конструкции барабанного механизма опоры колодок располагают на противоположных сторонах тормозного диска и привод каждой колодки выполняют от отдельного гидроцилиндра. Этим достигается больший тормозной момент и равномерность изнашивания колодок на каждом колесе, оборудованном по такой схеме.

    Барабанный тормозной механизм с пневматическим приводом (рис. 2 б) отличается от механизма с гидравлическим приводом конструкцией разжимного устройства колодок. В нем используется для разведения колодок разжимный кулак 7, приводимый в движение рычагом 8, посаженным на ось разжимного кулака. Рычаг отклоняется усилием, возникающем в пневматической тормозной камере 9, которая работает от давления сжатого воздуха. Возврат колодок в исходное положение при оттормаживании происходит под действием стяжной пружины 11. Нижние концы колодок закреплены на эксцентриковых пальцах 10, которые обеспечивают регулировку зазора между нижними частями колодок и барабаном. Верхние части колодок подводятся к барабану при регулировке зазора с помощью червячного механизма.


    Рис. 3. Колесный дисковый тормозной механизм:

    а - в сборе, б - разрез по оси колесных тормозных цилиндров;

    1 - тормозной диск, 2 - шланги, 3 - поворотный рычаг, 4 - стойка передней подвески,5 - грязезащитный диск, 6 - клапан выпуска воздуха, 7 - шпилька крепления колодок, 8, 9 –половины скобы,10 - тормозная колодка,11 - канал подвода жидкости, 12 - поршень малый, 13 - поршень большой
    Колесный дисковый тормозной механизм с гидроприводом состоит из тормозного диска 1, закрепленного на ступице колеса. Тормозной диск вращается между половинками 8 и 9 скобы, прикрепленной к стойке 4 передней подвески. В каждой половине скобы выточены колесные цилиндры с большим 13 и малым 12 поршнями.

    При нажатии на тормозную педаль жидкость из главного тормозного цилиндра перетекает по шлангам 2 в полости колесных цилиндров и передает давление на поршни, которые, перемещаясь с двух сторон, прижимают тормозные колодки 10 к диску 1, благодаря чему и происходит торможение.

    Отпускание педали вызывает падение давления жидкости в приводе, поршни 13 и 12 под действием упругости уплотнительных манжет и осевого биения диска отходят от него, и торможение прекращается.

    Преимущества барабанных тормозов:

    - низкая стоимость, простота производства;

    - обладают эффектом механического самоусиления. Благодаря тому, что нижние части колодок связаны друг с другом, трение о барабан передней колодки усиливает прижатие к нему задней колодки. Этот эффект способствует многократному увеличению тормозного усилия, передаваемого водителем, и быстро повышает тормозящее действие при усилении давления на педаль.

    Преимущества дисковых тормозов:

    - при повышении температуры характеристики дисковых тормозов довольно стабильны, тогда как у барабанных снижается эффективность.

    - температурная стойкость дисков выше, в частности, из-за того, что они лучше охлаждаются;

    - более высокая эффективность торможения позволяет уменьшить тормозной путь;

    - меньшие вес и размеры;

    - повышается чувствительность тормозов;

    время срабатывания уменьшается

    - изношенные колодки просто заменить, на барабанных приходится предпринимать усилия на подгонку колодок чтобы одеть барабаны;

    - около 70% кинетической энергии автомобиля гасится передними тормозами, задние дисковые тормоза позволяют снизить нагрузку на передние диски;

    - температурные расширения не влияют на качество прилегания тормозных поверхностей.


    Гидравлический привод тормозов


    Тормозную систему с гидравлическим приводом тормозов применяют на всех легковых и некоторых грузовых автомобилях. Она выполняет одновременно функции рабочей, запасной и стояночной систем. Чтобы повысить надежность тормозной системы на легковых автомобилях ВАЗ, АЗЛК, ЗАЗ применяют двухконтурный гидравлический привод, который состоит из двух независимых приводов, действующих от одного главного тормозного цилиндра на тормозные механизмы отдельно передних и задних колес. На автомобиле ГАЗ-24 с этой же целью применяют в приводе тормозов разделитель, позволяющий использовать исправную часть тормозной системы в качестве запасной, если в другой части тормозной системы произошло нарушение герметичности.

    Главный тормозной цилиндр (рис.4) приводится в действие от тормозной педали, установленной на кронштейне кузова. Корпус 2 главного цилиндра выполнен совместно с резервуаром для тормозной жидкости. Внутри цилиндра находится алюминиевый поршень 10 с уплотнительным резиновым кольцом. Поршень может перемещаться под действием толкателя 1, соединенного шарнирно с педалью.


    Рис. 4. Главный тормозной цилиндр
    Днище поршня упирается через стальную шайбу в уплотнительную манжету 9, прижимаемую пружиной 8. Она же прижимает к гнезду впускной клапан 7, внутри которого расположен нагнетательный клапан 6.

    Внутренняя полость цилиндра сообщается с резервуаром компенсационным 4 и перепускным 3 отверстиями. В крышке резервуара сделано резьбовое отверстие для заливки жидкости, закрываемое пробкой 5. При нажатии на тормозную педаль под действием толкателя 1 поршень с манжетой перемещается и закрывает отверстие 4, вследствие чего давление жидкости в цилиндре увеличивается, открывается нагнетательный клапан 6 и жидкость поступает к тормозным механизмам. Если отпустить педаль, то давление жидкости в приводе снижается, и она перетекает обратно в цилиндр. При этом избыток жидкости через компенсационное отверстие 4 возвращается в резервуар. В то же время пружина 8, действуя на клапан 7, поддерживает в системе привода небольшое избыточное давление после полного отпускания педали.

    При резком отпускании педали поршень 10 отходит в крайнее положение быстрее, чем перемещается манжета 9, и жидкость начинает заполнять освобождающуюся полость цилиндра. Одновременно в полости возникает разрежение. Чтобы устранить его, в днище поршня имеются отверстия, сообщающие рабочую полость цилиндра с внутренней полостью поршня. Через них жидкость перетекает в зону разрежения, чем и устраняется нежелательный подсос воздуха в цилиндр. При дальнейшем перемещении манжеты жидкость вытесняется во внутреннюю полость поршня и далее через перепускное отверстие 3 в резервуар.

    Колесный тормозной цилиндр тормозного механизма заднего колеса состоит из чугунного корпуса, внутри которого помещены два алюминиевых поршня с уплотнительными резиновыми манжетами. В торцовую поверхность поршней для уменьшения изнашивания вставлены стальные сухари. Цилиндр с обеих сторон закрыт защитными резиновыми чехлами. Жидкость в полость цилиндра поступает через отверстие, в которое ввернут присоединительный штуцер. Для выпуска воздуха из полости цилиндра используется клапан прокачки, закрытый снаружи резиновым колпачком. В цилиндре имеется устройство для регулировки зазора между колодками и барабаном, представляющее собой пружинное упорное кольцо, вставленное с натягом в корпус цилиндра.

    Во время торможения внутри цилиндра создается давление жидкости, под действием которого поршень перемещается и отжимает тормозную колодку. По мере изнашивания фрикционной накладки ход поршня при торможении становится больше и наступает момент, когда он своим буртиком передвигает упорное кольцо, преодолевая усилие его посадки. При обратном перемещении колодки под действием стяжной пружины упорное кольцо остается в новом положении, так как усилия стяжной пружины недостаточно, чтобы сдвинуть его назад. Таким образом, достигается компенсация износа накладок и автоматически устанавливается минимальный зазор между колодками и барабаном. Колесный цилиндр тормозного механизма переднего колеса действует только на одну колодку, поэтому отличается от колесного цилиндра заднего колеса внешними размерами и количеством поршней: в цилиндре заднего колеса размещены два поршня, в цилиндре переднего - один. Все остальные детали цилиндров, за исключением корпуса, одинаковы по конструкции.

    Гидровакуумный усилитель тормозов


    Работа гидровакуумного усилителя основана на использовании энергии разрежения во впускном трубопроводе двигателя, благодаря чему создается дополнительное давление жидкости в системе гидропривода тормозов. Это позволяет при сравнительно небольших усилиях на тормозной педали получать значительные усилия в тормозных механизмах колес, оборудованных такой системой привода. Гидровакуумные усилители применяют на легковых автомобилях, а также на грузовых.

    Основными частями гидровакуумного усилителя (рис. 5) являются цилиндр 9 с клапаном управления и камера 15. Гидроусилитель соединен соответствующими трубопроводами с главным тормозным цилиндром 13, впускным трубопроводом 14 двигателя и разделителем 12 тормозов. Камера 15 состоит за штампованного корпуса и крышки, между которыми зажата диафрагма 16. Она жестко соединена со штоком 10 поршня 11 и отжимается конической пружиной 1 в исходное положение после растормаживания. В поршне 11 имеется запорный шариковый клапан. Сверху на корпусе цилиндра расположен корпус 6 клапана 7 управления. Поршень 8 жестко соединен с клапаном 7, закрепленном на диафрагме 4. Внутри корпуса 6 размещен вакуумный клапан 3 и связанный с ним с помощью штока атмосферный клапан 2. При отпущенной педали и работающем двигателе в полостях камеры существует разрежение и под действием пружины 1 все детали гидроцилиндра находятся в левом крайнем положении. В момент нажатия на педаль тормоза жидкость от главного тормозного цилиндра 13 перетекает через шариковый клапан в поршне 11 усилителя к тормозным механизмам колес. По мере повышения давления в системе поршень 8 клапана управления поднимается, закрывая вакуумный клапан 3 и открывая атмосферный клапан 2.

    При этом атмосферный воздух начинает проходить через фильтр 5 в полость IV, уменьшая в ней разрежение. Поскольку в полости III разрежение продолжает сохраняться, разность давлений перемещает диафрагму 16 сжимая пружину 1 и через шток 10 действуя на поршень 11. При этом на поршень усилителя начинают действовать две силы: давление жидкости от главного тормозного цилиндра и давление со стороны диафрагмы, которые усиливают эффект торможения.


    Рис. 5. Гидровакуумный усилитель автомобиля ГАЗ-24 «Волга»

    При отпускании педали давление жидкости на клапан управления снижается, его диафрагма 4 прогибается вниз и открывает вакуумный клапан 3, сообщая полости 111 и IV. Давление в полости IV падает, и все подвижные детали камеры и цилиндра перемещаются влево в исходное положение, происходит растормаживание. Если гидроусилитель неисправен, привод будет действовать только от педали главного тормозного цилиндра с меньшей эффективностью.

    Пневматический привод тормозов


    Тормозную систему с пневматическим приводом применяют на большегрузных грузовых автомобилях и больших автобусах. Тормозное усилие в пневматическом приводе создается воздухом, поэтому при торможении водитель прикладывает к тормозной педали небольшое усилие, управляющее только подачей воздуха к тормозным механизмам. По сравнению с гидравлическим приводом пневмопривод имеет менее жесткие требования к герметичности всей системы, так как небольшая утечка воздуха при работе двигателя восполняется компрессором. Однако сложность конструкции приборов пневмопривода, их габаритные размеры и масса значительно выше, чем у гидропривода. Особенно усложняются системы пневмопривода на автомобилях, имеющих двухконтурную или многоконтурную схемы. Такие пневмоприводы применяют, например, на автомобилях МАЗ, ЛАЗ, КамАЗ и ЗИЛ-130 (с 1984 г.).

    Сущность двухконтурной схемы пневмопривода автомобилей МАЗ состоит в том, что все приборы пневмопривода соединены в две независимые ветви для передних и задних колес. На автобусах ЛАЗ также применены два контура привода, действующие от одной педали через два тормозных крана на колесные механизмы передних и задних колес раздельно. Этим повышается надежность пневмопривода и безопасность движения в случае выхода из строя одного контура.

    Наиболее простую схему имеет пневмопривод тормозов на автомобиле ЗИЛ-130 (рис.6) выпуска до 1984 г. В систему привода входят компрессор 1, манометр 2, баллоны 3 для сжатого воздуха, задние тормозные камеры 4, соединительная головка 5 для соединения с тормозной системой прицепа, разобщительный кран 6, тормозной кран 8, соединительные трубопроводы 7 и передние тормозные камеры 9.

    При работе двигателя воздух, поступающий в компрессор через воздушный фильтр, сжимается и направляется в баллоны, где находится под давлением. Давление воздуха устанавливается регулятором давления, который находится в компрессоре и обеспечивает его работу вхолостую при достижении заданного уровня давления. Если водитель производит торможение, нажимая на тормозную педаль, то этим он воздействует на тормозной кран, открывающий поступление воздуха из баллонов в тормозные камеры колесных тормозов.

    Для наблюдения за работой пневматического тормозного привода и своевременной сигнализации о его состоянии и возникающих неисправностях в кабине на щитке приборов имеются пять сигнальных лампочек, двухстрелочный манометр, показывающий давление сжатого воздуха в ресиверах двух контуров (I и II) пневматического привода рабочей тормозной системы, и зуммер, сигнализирующий об аварийном падении давления сжатого воздуха в ресиверах любого контура тормозного привода.


    Рис. 6. Схема пневмопривода тормозов автомобиля ЗИЛ-130
    Тормозные камеры поворачивают разжимные кулаки колодок, которые разводятся и нажимают на тормозные барабаны колес, производя торможение.

    При отпускании педали тормозной кран открывает выход сжатого воздуха из тормозных камер в атмосферу, в результате чего стяжные пружины отжимают колодки от барабанов, разжимный кулак поворачивается в обратную сторону и происходит растормаживание. Манометр, установленный в кабине, позволяет водителю следить за давлением воздуха в системе пневматического привода.

    На автомобилях ЗИЛ-130 начиная с 1984 г. введены изменения в конструкцию тормозной системы, которые удовлетворяют современным требованиям безопасности движения. С этой целью в пневматическом тормозном приводе использованы приборы и аппараты тормозной системы автомобилей КамАЗ.

    Привод обеспечивает работу тормозной системы автомобиля в качестве рабочего стояночного и запасного тормозов, а также выполняет аварийное растормаживание стояночного тормоза, управление тормозными механизмами колес прицепа и питание других пневматических систем автомобиля.

    Устройство и работа стояночной, вспомогательной и запасной тормозных систем


    Вспомогательная тормозная система используется в виде тормоза-замедлителя на автомобилях большой грузоподъемности (МАЗ, КрАЗ, КамАЗ) с целью снижения нагрузки при длительном торможении на рабочую тормозную систему, например на длинном спуске в горной или холмистой местности. Механизм вспомогательной тормозной системы (рис. 7). В приемных трубах глушителя установлены корпус 1 и заслонка 3, закрепленная на валу 4. На валу заслонки закреплен также поворотный рычаг 2, соединенный со штоком пневмоцилиндра. Рычаг 2 и связанная с ним заслонка 3 имеют два положения. Внутренняя полость корпуса сферическая. При выключении вспомогательной тормозной системы заслонка 3 устанавливается вдоль потока отработавших газов, а при включении — перпендикулярно потоку, создавая определенное противодавление в выпускных коллекторах. Одновременно прекращается подача топлива. Двигатель начинает работать в режиме компрессора.



    Рис. 7 - Механизм вспомогательной тормозной системы: 1 - корпус; 2 - рычаг поворотный; 3 - заслонка; 4 - вал
    Стояночная тормозная система служит для удерживания остановленного автомобиля на месте, чтобы исключить его самопроизвольное трогание (например, на уклоне). Управляется стояночная тормозная система рукой водителя через рычаг ручного тормоза. При отказе одного контура рабочей тормозной системы стояночная тормозная система может использоваться как аварийная совместно с исправным контуром рабочей тормозной системы.

    Устройство стояночной тормозной системы на примере автомобиля БЕЛАЗ 75483. Стояночная тормозная система состоит из тормозного механизма колодочного типа с тормозным цилиндром и крана управления. В системе установлен датчик, включающий сигнальную лампу на панели приборов в кабине. Тормозной механизм стояночной тормозной системы установлен на валу главной передачи заднего моста и блокирует только ведущие колеса. Пневматический привод стояночной тормозной системы запитан от ресивера. При повороте рукоятки крана в положение "расторможено" воздух из ресивера и кран управления поступает в штоковую полость цилиндра. Поршень цилиндра перемещается, сжимая пружины, поворачивает регулировочный рычаг вместе с разжимным кулаком и разблокирует тормозной механизм. Давление воздуха в полости цилиндра, а следовательно, и перемещение поршня зависит от угла поворота рукоятки крана управления, что позволяет регулировать эффективность стояночной тормозной системы при использовании ее в качестве аварийной при торможении движущегося самосвала.

    Тормозной механизм стояночной тормозной системы (рис.8) колодочного типа с двумя внутренними колодками, установлен на валу главной передачи заднего моста и блокирует только ведущие колеса.



    Рис. 8. Тормозной механизм стояночной тормозной системы:

    1 — главная передача; 2 — тормозная колодка; 3 — щиток; 4 — ведущий вал главной передачи; 5 — палец крепления пружины; 6 — цилиндр тормозного механизма; 7 — кронштейн; 8 — разжимной кулак; 9 — верхняя стяжная пружина; 10 — суппорт; 11 — ось колодок; 12 — нижняя стяжная пружина; 13 — барабан тормозного механизма; 14, 20 — упорные кольца; 15, 21, 25 — шайбы; 16 — болт; 17 — фланец; 18 — пружинные шайбы; 19 — болт крепления барабана и карданного вала; 22 — уплотнительное кольцо; 23 — масленка; 24 — регулировочный рычаг;
    Две тормозные колодки 2 с приклепанными тормозными накладками опираются на общую ось 11. Стяжной пружиной 9 колодки прижаты к разжимному кулаку 8, а пружиной 12 — к оси 11. На валу разжимного кулака на шлицах закреплен регулировочный рычаг 24, который соединен со штоком цилиндра тормозного механизма. При затормаживании самосвала сжатый воздух из цилиндра тормозного механизма через кран управления выходит в атмосферу, и усилием пружин тормозного цилиндра регулировочный рычаг поворачивается вместе с разжимным кулаком, который прижимает колодки к барабану. Тормозной механизм блокирует вращающиеся элементы трансмиссии с картером передачи.

    Тормозные колодки


    Тормозные колодки – важный элемент тормозной системы автомобиля. В конструкции тормозной колодки выделяют стальной корпус и фрикционную накладку. В процессе эксплуатации автомобиля фрикционная накладка изнашивается (стирается) в результате чего требуется периодически производить замену тормозных колодок.

    Тормозной механизм состоит из вращающейся и неподвижной частей. В качестве вращающейся части барабанного механизма используется тормозной барабан, неподвижной части – тормозные колодки или ленты.

    Вращающаяся часть дискового механизма представлена тормозным диском, неподвижная – тормозными колодками. На передней и задней оси современных легковых автомобилей устанавливаются, как правило, дисковые тормозные механизмы.

    Дисковый тормозной механизм состоит из вращающегося тормозного диска, двух неподвижнах колодок, установленных внутри суппорта с обеих сторон.

    Суппорт закреплен на кронштейне. В пазах суппорта установлены рабочие цилиндры, которые при торможении прижимают тормозные колодки к диску.

    Тормозной диск при томожении сильно нагреваются. Охлаждение тормозного диска осуществляется потоком воздуха. Для лучшего отвода тепла на поверхности диска выполняются отверстия. Такой диск называется вентилируемым. Для повышения эффективности торможения и обеспечения стойкости к перегреву на спортивных автомобилях применяются керамические тормозные диски.

    В нормальной ситуации тормозные колодки должны стираться значительно быстрее тормозных дисков. На автомобилях выпущенных до 2000 года ресурс тормозных дисков рассчитан на сотни тысяч километров. На автомобилях выпущенных после 2010 года заводской ресурс тормозных дисков редко превышает 100 000 км. Но как бы там ни было тормозная колодка должна стираться в несколько раз быстрее тормозных дисков. Передних тормозных колодок в городском цикле хватает примерно на 30 000 км, задних на 60 000 км.

    В свое время это был очень распространенный тип тормозных механизмов. Устройство простейшее (рис. 9): тормозной щиток, не вращающийся и жестко закрепленный на поворотном кулаке (если передние колеса управляемые) или на цапфе (если это задняя ось), на тормозной щиток установлен рабочий тормозной цилиндр, также установлены тормозные колодки, которые одним концом опираются на опоры, а другим — упираются в поршни рабочего тормозного цилиндра. На тормозные колодки наклеены или приклепаны фрикционные накладки, сверху все эти детали накрываются тормозным барабаном, который вращается вместе с колесами.

    Если вдруг понадобилось снизить скорость или остановиться, водитель, нажимая на педаль тормоза, через гидропривод воздействует на поршни рабочего тормозного цилиндра, которые, перемещаясь, раздвигают тормозные колодки, прижимая их к поверхности тормозного барабана.

    Существует несколько схем расположения тормозных колодок.


    Рис. 9. Пример барабанного тормозного механизма.
    В барабанном тормозном механизме, который показан на рисунке 9 (одна из самых распространенных схем расположения колодок), две колодки установлены последовательно друг за другом. Одна колодка — передняя, другая – задняя (по ходу движения). Причем обе колодки снизу установлены на осях, а сверху упираются в поршни рабочего цилиндра. При торможении силы будут действовать так, что передняя колодка будет как бы подклинивать, а заднюю колодку создаваемые усилия будут стараться отодвинуть от барабана. Этим может быть вызван неравномерный износ фрикционных накладок. Так же этот эффект приводит к тому, что рабочие поверхности фрикционных накладок используются не в полной мере. Для того чтобы после торможения тормозные колодки вернулись в исходное положение, установлены возвратные пружины.

    Регулируется зазор между колодками и барабаном зачастую автоматически. Реализовано это просто: поршни рабочих цилиндров, перемещаясь наружу под действием давления жидкости, выберут имевшийся между ними и упругими кольцами осевой зазор, после чего потянут кольца за собой. Движение поршней будет продолжаться до тех пор, пока колодки не упрутся в барабан. При отпускании педали возвратные пружины смогут переместить поршни назад только на величину, соответствующую осевому зазору между поршнем и кольцом, так как сдвинуть кольцо они не в состоянии. Величина же зазора, как было сказано выше, соответствует необходимому зазору между колодкой и барабаном. Таким образом, по мере изнашивания накладок кольцо будет перемещаться вдоль цилиндра, поддерживая постоянную величину зазора в механизме.

    Барабанные тормозные механизмы имеют ряд преимуществ, по сравнению с дисковыми тормозами, однако и недостатков немало.

    Преимущества:

    • большая рабочая поверхность тормозных колодок и возможность ее увеличения как за счет диаметра тормозного барабана, так и за счет его ширины (полезное свойство для грузовых автомобилей);

    • относительная защищенность тормозного механизма от пыли и грязи;

    • стойкость элементов тормозного механизма к перепаду температур.

    Недостатки:

    Существует два типа тормозные суппортов: фиксированный и плавающий. В первом случае в тормозном суппорте есть два поршня, расположенных по обе стороны от тормозного диска. Сам суппорт жестко закреплен на поворотном кулаке. Поршни воздействуют на внутреннюю и наружную тормозные колодки. К каждому из поршней подводится тормозная жидкость.

    Во втором случае тормозной суппорт имеет поршень или поршни только с одной стороны, при этом он имеет возможность перемещаться вдоль оси вращения диска. Так, при торможении поршень перемещается и давит на внутреннюю колодку, после того, как колодка упрется в диск, а давление в гидроприводе продолжит возрастать, уже суппорт начнет перемещаться и прижимать наружную колодку к диску. Первый вариант прочнее, но дороже. Второй вариант дешевле, но не такой надежный.

    Заключение


    Тормозная система служит для снижения скорости и быстрой остановки автомобиля, а также для удержания его на месте при стоянке. Наличие надежных тормозов позволяет увеличить среднюю скорость движения, а следовательно, эффективность при эксплуатации автомобиля.

    К тормозной системе автомобиля предъявляются высокие требования. Она должна обеспечивать возможность быстрого снижения скорости и полной остановки автомобиля в различных условиях движения. На стоянках с продольным уклоном до 16% полностью груженый автомобиль должен надежно удерживаться тормозами от самопроизвольного перемещения.

    Современный автомобиль оборудуется рабочей, запасной, стояночной и вспомогательной тормозными системами. Рабочая тормозная система служит для снижения скорости движения автомобиля вплоть до полной его остановки вне зависимости от его скорости, нагрузки и уклонов дороги. Стояночная тормозная система служит для удержания неподвижного автомобиля на горизонтальном участке или уклоне дороги. Запасная тормозная система предназначена для плавного снижения скорости движения автомобиля до остановки, в случаи отказа полной или частичной рабочей системы. Вспомогательная система тормозов предназначена для поддержания постоянной скорости автомобиля, при движении его на затяжных спусках горных дорог, с целью снижения нагрузки на рабочею

    Список литературы


    1. Газарян А.А. Техническое обслуживание автомобилей.- М: Транспорт, 1989.

    2. Карагодин В.И, Шестопалов С.К. Слесарь по ремонту автомобилей.- М.- Высшая школа.-1990.

    3. Чумаченко Ю.Т, Герасименко А.И, Рассанов Б.Б. Автослесарь. Устройство, техническое обслуживание и ремонт автомобилей.- Ростов-на-Дону: Феникс, 2004.

    4. Михайловский Е.В, Серебряков К.Б. Устройство автомобиля: Учебник.- М.- Машиностроение.- 1981.

    5. Третьяков А.М., Петров А.Д. Справочник молодого слесаря по техническому обслуживанию и ремонту автомобилей.- М.- 1985.

    6. Ремонт автомобилей: Учебник/ред. Румянцев С.И, Борщов В.Ф.- М.- Транспорт.- 1981.

    7. Боровских Ю.И., Кленников В.М., Сабинин А.А. Устройство автомобиля: Учебник.- М: Высшая школа, 1983.

    8. Лысов, М.И. Методы испытания автомобиля и его механизмов. Вып. 2. Карданные передачи автомобиля; М.: Машгиз - Москва, 2007. - 354 c.

    9. Шестопалов С. К. Устройство легковых автомобилей. В 2 частях. Часть 2. Трансмиссия, ходовая часть, рулевое управление, тормозные системы, кузов; Академия - Москва, 2013. - 400 c.


    написать администратору сайта