Волоконно-оптические датчики. Волоконно-оптические датчики — копия. Волоконнооптические датчики
Скачать 39.83 Kb.
|
Волоконно-оптические датчики Оптически-волоконные детекторы представляют собой устройства, используемые во многих сферах промышленности для определения концентрации веществ, скорости вращения, показателя преломления, механического напряжения, давления, уровня жидкости, температуры, вибрации, ускорения, положения в пространстве. Оптически волоконный тип датчиков приобретает все большее распространение для фиксации изменения параметров в ходе технологических процессов благодаря стабильности в течении продолжительного периода времени, устойчивости к помехам, имеющим электромагнитную природу, возможности бесконтактного измерения и другим преимуществам. Устройство и принцип действия Общий принцип работы волоконно-оптического датчика заключается в следующем: свет от источника излучения передается через оптическое волокно, в следствии это приводит к изменению параметров в волокне. После прохождения по оптоволокну происходит сравнение спектров и интенсивностей с исходным излучением. Результат оценки измеряемых величин не зависит от особенностей волокна. Измерительную информацию несут такие явления, как прерывание светового потока, отражение света, изменение энергии излучения. Датчики, которые используют прерывание светового потока, очень распространенные и просты в использовании. Примером таких датчиков может быть счетчик деталей, подаваемых на сборочный конвейер или упаковку. (Волоконно-оптический датчик для охраны периметра) В данном случае, в состав протяженного датчика входят три отдельных волокна многожильного оптического кабеля. Два верхних волокна выполняют функцию чувствительных элементов: в них подается излучение от полупроводникового лазера, работающего в непрерывном режиме. Третье (выходное) волокно служит для передачи сигналов на анализатор системы от оконечного оптического модуля. Источник излучения расположен в блоке анализатора, от него излучение лазера по пассивному волокну подается на начальный модуль. В этом модуле излучение расщепляется на два пучка, которые подаются на два чувствительных волокна. На оконечном модуле происходит интерференция обоих лучей. Если оба плеча этого интерферометра находятся в невозмущенном состоянии, то интерференционная картинка на оконечном модуле остается неизменной. При этом сигнал, передаваемый с оконечного модуля по выходному оптическому волокну на анализатор, не имеет переменной составляющей. При деформациях или вибрациях кабеля оптическая разность хода в чувствительных волокнах изменяется и оконечный модуль регистрирует переменную составляющую сигнала, передавая ее на анализатор. Разновидности По особенностям строения и принципу действия, различают такие виды детекторов, как: - волоконно-оптическая разновидность, отличающаяся тем, что в нем в качестве сенсора выступает волокно, оптические характеристики которого изменяются под воздействием факторов внешней среды; - элементы с оптически-волоконными связями, в которых сенсор располагается на участке разрыва волокна, в результате чего может воздействовать на светопередачу; - интегрально-оптические датчики, использующие в качестве чувствительного элемента световод планарного типа, принцип действия которого базируется на нарушении полного внутреннего отражения для лучей, проходящих вдоль его поверхности и выходящих за нее в результате изменения показателей преломления; - оптопары, имеющие открытый канал, в котором располагается промежуточный элемент или изучаемая среда. Датчики делятся на точечные и распределенные. Точечные: Перемещения Принцип его работы состоит в том, что свет, поступающий в передающий кабель приемного и осветительного световодов, отражается зеркальной поверхностью, выступающей в этом типе датчика в качестве модулирующего элемента. Зеркало крепится на оптической планке, позволяющей совершать его перемещения с очень малым (0,005 мм) шагом. После отражения от зеркала, сигнал по приемным волокнам кабеля поступает на фотодиод, откуда сигнал направляется на регистрирующую аппаратуру. Давления В промышленности измерение давления при помощи оптоволоконных кабелей проводится по оценке интенсивности излучения. Сенсором выступает элемент для измерения давления, в котором дифракционная решетка, локализующаяся между принимающими и передающими волокнами, присоединена к мембране. Показатели давления определяют на базе оценки количества излучения, попадающего в выходные волокна после отражения от поверхности мембраны. Этот показатель зависит от действующего давления, поскольку в зависимости от его величины меняется расстояние между концом жгута и поверхностью мембраны. Детектор для определения нагрузки, действующей на поверхность, оборудован устройствами температурной компенсации, в процессе измерения он размещается между двумя контактирующими поверхностями. Угла поворота Принцип действия фотоэлектрических датчиков основан на регистрации изменений оптических характеристик излучения при повороте определенных оптических элементов. Возможны различные варианты реализации таких устройств. Классическим устройством является система, состоящая из источника излучения, фотоприемника (фотоприемников), коллимирующей (преобр. расходящийся пучок лучей в параллельный) системы или системы световодов и диска, закрепленного на оси вращения с угловыми метками, например, в виде штрихов или углового двоичного кода. При повороте диска метки диска пересекают оптический луч и происходит изменение интенсивности излучения в заданном канале. Акустический (вибрации) Акустические устройства распределенного типа за счет отправления сигнала в кабель и последующего отслеживания отражений, рассеиваемых от него по длине волокна, позволяют измерять параметры акустического поля на длине до 50 км. После оценки времени между отправлением импульса и получением рассеянного отражения и анализа параметров получаемой ответной информации можно оценить величину акустического сигнала на всей длине протяженности кабеля. Распределенные: Температуры Определение температуры при помощи волоконно-оптического датчика основано на вибрациях молекулярной решетки, возникающих при прохождении света через область взаимодействия фотонов и электронов. При воздействии на кабель силы натяжения, давления, температуры наблюдается локальное изменение параметров сигнала обратной связи. Измерительные системы, основанные на использовании регистраторов из оптоволокна, применяют сопоставление интенсивности и спектра исходного и обратного рассеянного излучения, после его прохождения по волокну. Деформации Датчики деформации, действие которых основывается на изменении параметров дифракционной решетки Брэгга, нанесенных на поверхность волокна. В процессе прохождения через волоконно-оптическую линию излучение воспринимает решетку, как зеркало, показатели отражения которого зависят от ее периода. При изменении параметров тела, связанного с кабелем, происходит растяжение или сжатие решеток, в результате чего изменяется показатель их отражения, что фиксирует регистрирующая аппаратура. Где используются волоконно-оптические датчики Можно перечислить целый ряд отраслей, в которых применяются оптоволоконные датчики: - горнодобывающая промышленность – такие устройства используются в пожарных извещателях для мониторинга состояния шахтных стволов и конвейерных лент; - нефтегазовая сфера отрасли – приборы применяются при термомониторинге скважин и трубопроводных линий, дают возможность мгновенно отслеживать даже небольшие изменения температуры; - строительство – датчики широко востребованы в системе «умных домов», они позволяют отслеживать различные показатели для автоматического реагирования систем жизнеобеспечения. Также они применяются для постоянного мониторинга мостов, теплотрасс, инженерных систем; - авиационно-космическая отрасль – новые технологии позволили создать высокоточные датчики, фиксирующие незначительные деформации корпусов, а также отклонения от температурного уровня; - электроэнергетика – датчики могут использоваться для мониторинга силовых линий. |