|
Биохимия. Вопрос 1 Предмет и задачи биохимии
Вопрос 1
Предмет и задачи биохимии
Биохимия — это наука, которая изучает химическую природу веществ, входящих в состав живых организмов; их превращения и связь этих превращений с деятельностью клеток, тканей, органов и организма в целом.
Задачи биохимии:
1. Изучение состава организма и продуктов его обмена
2. Выяснение функций различных органов и тканей
3. Выяснение сущность химических процессов, лежащих в основе жизнедеятельности организма.
4. Выяснение и изучение механизмов высвобождения, накопления и использования энергии в организме.
5. Изучение механизмов образования и выведения конечных продуктов распада веществ.
6. Изучение механизмов воспроизведения и передачи наследственных признаков организма.
Вопрос 3
Строение белков
Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.
В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.
Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.
Аминокислотный состав белков
Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.
В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.
В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).
Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.
Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.
Вопрос 7
Считается, что взрослому человеку, работа которого не предполагает серьёзной физической нагрузки, необходим 1 г белка на 1 кг массы тела в сутки. При заболеваниях почек, сопровождающихся нарушением их функции, норма потребления белка снижается до 0,6‑0,8 г на кг массы тела в сутки. У профессиональных спортсменов норма потребления белка выше — 1,3-1,6 г на кг массы тела в сутки и даже больше, в зависимости от вида спорта и спортивного периода.
Рекомендуемая суточная норма потребления — усреднённое, расчётное количество потребления в пищу различных веществ живым существом в сутки, необходимое для поддержания нормального (здорового) состояния организма. Реже термин может употребляться для указания норм потребления непищевых веществ, например, воды и воздуха. Термин используется в медицине (диетологии), валеологии, ветеринарии.
В качестве периода используются сутки, так как большинство веществ рекомендуется употреблять регулярно и непрерывно. Суточное потребление — это гарантия непрерывного получения организмом необходимых веществ. Но некоторые вещества допускается употреблять с большей периодичностью, делая перерывы.
В пищевой промышленности для указания норм потребления пищевых продуктов, а не отдельных веществ, используется термин «адекватная дневная норма потребления» или просто «норма потребления».
В Российской Федерации рекомендуемые нормы утверждены РПН в «Методических рекомендациях 2.3.1.2432-08. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации.»
Вопрос 10
Строение ферментов
По строению ферменты делятся на простые (однокомпонентные) и сложные (двукомпонентные). Простой состоит только из белковой части, сложный (холофермент) – из белковой и небелковой частей. Белковая часть – апофермент, небелковая – кофермент (витамины В1, В2, В5, В6, Н, Q и др.). Отдельно апофермент и кофермент не обладают каталитической активностью. Участок на поверхности молекулы фермента, который взаимодействует с молекулой субстрата – активный центр.
Активный центр образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных сближенных полипептидных цепей. Образуется на уровне третичной структуры белка-фермента. В его пределах различают субстратный (адсорбционный) центр и каталитический центр. Кроме активного центра встречаются особые функциональные участки – аллостерические (регуляторные) центры.
Каталитический центр - это область активного центра фермента, которая непосредственно участвует в химических преобразованиях субстрата. КЦ простых ферментов – это сочетание нескольких аминокислотных остатков, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи (серин, цистеин, тирозин, гистидин, аргинин, асп. и глут. кислоты). КЦ сложного белка устроен сложнее, т.к. участвует простетическая группа фермента – кофермент (водорастворимые витамины и жирорастворимый витамин K).
Субстратный (адсорбционный) центр - это участок активного центра фермента, на котором происходит сорбция (связывание) молекулы субстрата. СЦ формируется одним, двумя, чаще тремя радикалами аминокислот, которые обычно расположены рядом с каталитическим центром. Главная функция СЦ - связывание молекулы субстрата и ее передача каталитическому центру в наиболее удобном для него положении.
Аллостерический центр ("имеющий иную пространственную структуру") - участок молекулы фермента вне его активного центра, который обратимо связывается с каким-либо веществом. Такое связывание приводит к изменению конформации молекулы фермента и его активности. Активный центр либо начинает работать быстрее, либо медленнее. Соответственно такие вещества называют аллостерическими активаторами либо аллостерическими ингибиторами.
Аллостерические центры найдены не у всех ферментов. Они есть у ферментов, работа которых изменяется под действием гормонов, медиаторов и других биологически активных веществ.
Вопрос 23
Вода как основа биологических процессов в клетке
Со школы все знают, какова роль воды в клетках и что человеческий организм не способен существовать без нее. При потере 3% влаги начинается жажда, а при 20% происходит отмирание тканей. Она необходима каждой частице организма. Взрослым и детям будет интересно узнать, в каких клетках человека содержится больше всего воды и что произойдет при дефиците. + Клетка содержит от 40 до 98% воды, необходимой для работы систем. С биологической точки зрения есть 2 основных функции воды в клетках: транспортная и метаболическая. Первый термин означает «доставку» необходимых организму веществ с помощью влаги и выведение продуктов жизнедеятельности. Вторым называют биологические процессы, например, фотосинтез и гидролиз макромолекул. Вода является донором для электронов при фотосинтезе, во время которого происходит фотолиз воды в клетках под названием хлоропласты. Вещество бывает в свободной и связанной формах:
Свободная форма отвечает за транспортировку жидкости из внешней среды в ткани и наоборот. Она является растворителем, ведь поступление воды в растительные клетки происходит в процессе осмоса. Находится она практически во всех тканях организма: внутренних органах, сосудистой сетке, вакуолях, межклеточном пространстве. Связанная форма нужна для образования соединений с определенными белками. Такой жидкости может быть не более 4% от общей массы частицы. Обнаружить ее удастся между волокнами, мембранами и молекулами белка.
Жидкость необходима человеку намного сильнее, чем еда. Без пищи он проживет 3-3,5 недели, а без воды — всего 5-6 дней. Однако смерть в пустыне наступает уже через сутки. Значительную часть содержимого клеток составляет вода в свободной форме — до 95%.
Если говорить коротко о том, какова биологическая роль воды в клетках, то это обеспечение упругости и транспорта веществ, а также ускорение химических реакций. Жидкость запускает множество процессов в организме. Она растворяет вещества, которые поступают извне, а затем выводит их в отработанном виде. Помимо всего внутри происходят реакции, без участия влаги эти процессы иногда невозможны. Почему считается, что вода является идеальной жидкостью для клетки можно узнать, изучив ее функции:
осуществление гидролиза белков, жиров и углеводов, что необходимо для высвобождения энергии; терморегуляция, ведь вещество обладает высоким показателем теплопроводности и теплоемкости; доставка веществ (транспорт), например, выведение продуктов жизнедеятельности в виде молекул жидкости; обеспечение нормальной работы клеточной структуры, поддержание ее структуры и давления внутри клетки.
Многих интересует какую долю в среднем составляет в клетках вода, но на этот вопрос трудно ответить. В составе большинства видов тканей она занимает первое место (исключением являются кости и зубная эмаль). Например, ее содержание в жировой ткани доходит до 99%, в мышцах — 65%, в костях — до 22%, а в крови — более 80%. Даже в зубной эмали есть жидкость, но всего около 0,2% влаги. Средним показателем считают 80%.
Снижение показателей даже на несколько процентов приводит к серьезным нарушениям, поэтому необходимость воды и ее роль в жизнедеятельности клеток — очевидна. Наиболее популярным считают недостаток влаги в крови, что в скором времени приведет к ее загустению. В результате возникает ломкость сосудов, образование тромбов и кровоизлияния во внутренние органы. Вода в клетке напрямую определяет физические свойства: чем влаги больше, тем выше будет ее упругость и объем.
Содержание воды зависит от возраста организма и скорости метаболизма. У эмбрионов оно до 90%, но на протяжении всей жизни снижается, что объясняет ухудшение здоровья в пожилом возрасте. Влага выступает в роли смазки, защищая поверхности от истирания (суставы и хрящи).
О роли воды в жизни клеток должен знать каждый, ведь жидкость необходима любому организма. Она обеспечивает работу всех тканей и систем, химических и биологических процессов
Вопрос 33
Обмен энергии в организме человека
Источником энергии в организме служат продукты гидролиза углеводов, жиров и белков, поступающие в организм. Освобождение же энергии в организме происходит в процессе диссимиляции (катаболизма), т. е. распада клеточных структур и соединений организма, которые синтезируются из питательных веществ, поступающих в кровь в результате пищеварения (гидролиза) пищевых продуктов и всасывания продуктов гидролиза в кровь. Различают основной и рабочий обмен.
А. Основным обменом называют минимальный расход энергии, обеспечивающий гомеостазис в стандартных условиях: при бодрствовании, максимальном мышечном и эмоциональном покое, нато-
щак (12 -16 ч без еды), при температуре комфорта (18° - 20°С). Основной обмен определяют в указанных стандартных условиях потому, что физическая нагрузка, эмоциональное напряжение, прием пищи и изменение температуры окружающей среды увеличивают интенсивность метаболических процессов в организме (расход энергии). Энергия основного обмена в организме расходуется на обеспечение жизнедеятельности всех органов и тканей организма, клеточный синтез, на поддержание температуры тела.
На величину должного (среднестатистического) основного обмена здорового человека влияют следующие факторы: пол, воз-. раст, рост и масса тела (вес). На величину истинного (реального) основного обмена здорового человека влияют также условия жизнедеятельности, к которым организм адаптирован: постоянное проживание в холодной климатической зоне увеличивает основной обмен; длительное вегетарианское питание уменьшает. Величину должного основного обмена у человека определяют по таблицам, формулам, номограммам.
Для определения величины истинного основного обмена у человека используют метод Крога (неполный газовый анализ, см. раздел 12.3).
Величина основного обмена в сутки у мужчин составляет 1500 -ъ 1700ккал (6300- 7140 кДж); в расчете на 1 кг массы в сутки равна 21-24 ккал (88 - 101 кДж). У женщин эти показатели примерно на 10% меньше.
Показатели основного обмена при расчете на 1м2 поверхности тела у теплокровных животных разных видов и человека примерно равны, при расчете на 1 кг массы сильно отличаются: чем мельче организм, тем больше расход энергии.
Б. Рабочим обменом называют совокупность основного обмена и дополнительного расхода энергии, обеспечивающего жизнедеятельность организма в различных условиях. Факторами, повышающими расход энергии организмом, являются: физическая и умственная нагрузка, эмоциональное напряжение, изменение температуры и других условий окружающей среды, специфическиди-намическое действие пищи (увеличение расхода энергии после приема пищи). При этом изменение температуры в интервале 15 -30°С существенно не сказывается на энергозатратах организма. При температуре ниже 15°С, а также выше 30°С расход энергии увеличивается. Повышение обмена веществ при температуре окружающей среды ниже 15° предотвращает охлаждение организма.
Расход энергии организмом после приема белковой и смешанной пищи увеличивается на 20 - 30%, после приема жиров и углеводов увеличивается на 10- 12%.
Часть тепловой энергии, вырабатываемой организмом в процессе его жизнедеятельности, обеспечивает механическую работу. Для определения эффективности этого преобразования вводится понятие коэффициент полезного действия организма при мышечной работе - это выраженное в процентах отношение энергии, эквивалентной полезной механической работе, ко всей энергии, затраченной на выполнение этой работы. Коэффициент полезного действия (КПД) у человека при мышечной работе рассчитывают по формуле: КПД = -—-100%, где А - энергия, эквивалентная полезной работе, С - общий расход энергии, е - расход энергии за такой же промежуток времени в состоянии покоя. КПД равен 20%.
|
В. Потребность организма в энергии (ккал в сутки) определяется видом трудовой деятельности.
Г. Исследование прихода энергии в организм. Основными методами определения количества энергии в навеске продукта являются: физическая калориметрия; физико-химические методики определения количества белков, жиров и углеводов в навеске с последующим расчетом содержащихся в них энергий по таблицам.
Сущность способа физической калориметрии заключается в следующем: в калориметре сжигают навеску продукта, а затем по степени нагревания воды и материала калориметра рассчитывают выделившуюся энергию. Количество тепла, выделившегося при сгорании продукта в калориметре, рассчитывают по формуле: где О. - количество тепла, М - масса (в - воды, к - калориметра), (12_ ^) разность температур воды и калориметра после и до сжигания навески, С - удельная теплоемкость, 0 - количество тепла, образуемое окислителем.
Количество тепла, освобождаемое при сгорании 1 г вещества в калориметре, называют физическим калорическим коэффициентом, при окислении 1 г вещества в организме - физиологическим калорическим коэффициентом. Основанием для расчета прихода энергии в организм по количеству усвоенных белков, жиров и углеводов является закон термодинамики Гесса, который гласит: термодинамический эффект зависит только от теплосодержания начальных и конечных продуктов реакции и не зависит от промежуточных превращений этих веществ. При окислении в организме 1 г белков освобождается 4, 1 ккал(17, 2кДж), 1 г жиров -9, 3 ккал (38, 9 кДж), 1 г углеводов - 4, 1 ккал (17, 2 кДж). При сгорании в калориметре жиров и углеводов выделяется столько же тепла, сколько в организме. При сгорании белка в калориметре энергии выделяется несколько больше, чем в организме, так как часть энергии белка при окислении в организме теряется с мочевиной и другими веществами белкового обмена, которые содержат энергию и выводятся с мочой.
Чтобы рассчитать приход энергии в организм с пищей, химическим путем определяют содержание белков, жиров и углеводов в продуктах питания, умножают их количество на соответствующие физиологические калорические коэффициенты, суммируют и из суммы вычитают 10% - что не усваивается в пищеварительном тракте(потери с калом).
Д. Расход энергии организмом определяют с помощью прямой и непрямой калориметрии. Основными из этих методов являются следующие: прямая калориметрия - метод Этуотера - Бенедикта; непрямая, или косвенная, калориметрия - методы Крога, Шатерникова, Дугласа - Холдена.
Принцип прямой калориметрии основан на непосредственном измерении количества тепла, выделенного организмом.
Принцип работы и устройство камеры Этуотера - Бенедикта. Камера, в которую помещают испытуемого, термически изолирована от окружающей среды, ее стенки не поглощают тепло, внутри них находятся радиаторы, через которые течет вода. По степени нагрева определенной массы воды рассчитывают количество тепла, израсходованного организмом.
Принцип непрямой (косвенной) калориметрии основан на расчете количества выделившейся энергии по данным газообмена (поглощенный 02 и выделившийся С02 за,сутки). Количество выделяемой организмом энергии можно рассчитать по показателям газообмена потому, что количество потребленного организмом 02 и выделенного С02 точно соответствует количеству окисленных белков, жиров и углеводов, а значит, и израсходованной организмом энергии. Для расчета расхода энергии методом непрямой калориметрии используются дыхательный коэффициент и калорический эквивалент кислорода.
Дыхательным коэффициентом называют отношение объема выделенного организмом углекислого газа к объему потребленного за это же время кислорода. Величина дыхательного коэффициента зависит от соотношения белков, жиров и углеводов, окисляющихся в организме. Дыхательный коэффициент при окислении в организме белков равен 0,8, жиров - 0,7, углеводов -1,0. Дыхательный коэффициент для жиров и белков ниже, чем для углеводов, вследствие того, что на окисление белков и жиров расходуется больше 02, так как они содержат меньше внутримолекулярного кислорода, чем углеводы. Дыхательный коэффициент у человека в начале интенсивной физической работы приближается к единице, потому что источником энергии в этом случае являются преимущественно углеводы.
В первые минуты после интенсивной и длительной физической работы дыхательный коэффициент у человека больше единицы, так как С02 выделяется больше, чем потребляется 02, поскольку молочная кислота, накопившаяся в мышцах, поступает в кровь и вытесняет С02 из бикарбонатов.
Калорическим эквивалентом кислорода называют количество тепла, освобождаемого организмом при потреблении 1л 02. Величина калорического эквивалента кислорода зависит от соотношения белков, жиров и углеводов, окисляющихся в организме. Калорический эквивалент кислорода при окислении в организме (в процессе диссимиляции) белков, жиров и углеводов равен: для белков - 4, 48 ккал (18,8 кДж), для жиров - 4,69 ккал (19,6 кДж), для углеводов - 5,05 ккал (21,1 кДж).
Определение расхода энергии по способу Дугласа - Холдена (полный газовый анализ) осуществляют следующим образом. В течение нескольких минут испытуемый вдыхает атмосферный воздух, а выдыхаемый воздух собирают в специальный мешок, измеряют его количество и проводят анализ газов с целью определения объема потребленного кислорода и выделившегося С02. Рассчитывают дыхательный коэффициент, с помощью которого по таблице находят соответствующий калорический эквивалент 02, который затем умножают на объем 02, потребленного за данный промежуток времени.
Метод М. Н. Шатерникова для определения расхода энергии у животных в эксперименте заключается в следующем. Животное помещают в камеру, в которую поступает кислород по мере его расходования. Выделяющийся при дыхании С02 поглощается щелочью. Расчет выделенной энергии осуществляется по количеству потребленного 02 и усредненному калорическому эквиваленту 02: 4,9 ккал (20,6 кДж).
Определение расхода энергии по способу Крога (неполный газовый анализ). Испытуемый вдыхает кислород из мешка метабо-лиметра, выдыхаемый воздух возвращается в тот же мешок, предварительно пройдя через поглотитель С02. По показаниям метабо-лиметра определяют расход 02 и умножают на калорический эквивалент кислорода в условиях основного обмена: 4,86 ккал (20,36 кДж). Таким образом, метод Дугласа - Холдена предполагает расчет расхода энергии по данным полного газового анализа; метод Крога - только по объему потребленного кислорода с использованием калорического эквивалента кислорода, характерного для условий основного обмена (рис. 10.1).
Изменение интенсивности выработки энергии в организме играет главную роль в процессах терморегуляции.
|
|
|