Главная страница
Навигация по странице:

  • Газовые методы повышения нефтеотдачи пластов

  • Газовые и водогазовые методы увеличения нефтеотдачи Вытеснение нефти из пласта двуокисью углерода (СО2) Воздействие на пласт двуокисью углерода.

  • Методы увеличения нефтеотдачи. МУН доклад ШаймухаметовАФ. Воздействие на пласт газом высокого давления. Водогазовое воздействие. Воздействие двуокисью углерода


    Скачать 32.2 Kb.
    НазваниеВоздействие на пласт газом высокого давления. Водогазовое воздействие. Воздействие двуокисью углерода
    АнкорМетоды увеличения нефтеотдачи
    Дата24.11.2022
    Размер32.2 Kb.
    Формат файлаdocx
    Имя файлаМУН доклад ШаймухаметовАФ.docx
    ТипЗакон
    #810735

    Воздействие на пласт газом высокого давления. Водогазовое воздействие. Воздействие двуокисью углерода.

    2 слайд

    Методы повышения нефтеотдачи пластов основаны:

    1. на применении законов фильтрации пластовых флюидов;

    2. на физических, химических явлениях, происходящих в пласте;

    3. на взаимодействии частиц твердой породы и флюидов;

    4. на взаимовлиянии закачиваемых реагентов и нефти.

    Выбор конкретного метода нефтеотдачи и его эффективность зависит от геологического строения залежи и ее изученности, фильтрационно-емкостных свойств коллектора, от технологий, примененных с начала разработки, темпов отбора и закачки флюидов. На каждом разрабатываемом эксплуатационном объекте подбирают индивидуальные методы с учетом особенностей геологического строения и ФЕС разрабатываемых залежей. Методы повышения нефтеотдачи подразделяют на методы интенсификации притока нефти (МИП) и методы увеличения нефтеотдачи (МУН).

    3 слайд

    Методы увеличения нефтеотдачи (МУН).

    По своим свойствам методы увеличения нефтеотдачи можно разделить на группы: первая повышает коэффициент вытеснения нефти водой; вторая – увеличивает коэффициент охвата пласта заводнением, и третья группа увеличивает оба коэффициента, а значит КИН в целом. В отличие от МИП методы увеличения нефтеотдачи воздействуют на объект разработки или его часть, тем самым позволяют вовлечь в разработку остаточные, не извлеченные запасы нефти, которые при запроектированной системе заводнения добыть не удается. Практика показала, что применение МУН дороже применения обычного заводнения в несколько раз, поэтому рентабельность их применения зависит от стоимости добываемой нефти.

    К МУН относятся:

    1. физико-химические методы – применение водных растворов: активных примесей (поверхностно–активных веществ (ПАВ), полимеров, мицеллярных растворов, щелочей, кислот), изменение или выравнивание профилей приемистости (ВПП);

    2. гидродинамические методы – циклическое заводнение, изменение направлений фильтрационных потоков, создание высоких давлений нагнетания, форсированный отбор жидкости (ФОЖ), комбинированное нестационарное заводнение;

    3. газовые методы – вытеснение нефти газом высокого давления, водогазовое воздействие;

    4. тепловые, термические методы – вытеснение нефти теплоносителями (горячей водой, паром), внутрипластовое горение;

    5. другие методы – уплотнение сетки скважин, переход от одной системы разработки к другой (очаговое, избирательное заводнения, создание блочно-замкнутой системы), гидроразрыв пласта (ГРП), размещение и эксплуатация боковых и горизонтальных стволов; микробиологические, волновые, электромагнитные методы.

    Газовые методы повышения нефтеотдачи пластов

    Остаточную нефть из заводненных пластов способны вытеснять лишь те рабочие агенты, которые смешиваются с нефтью и водой или имеют сверхнизкое межфазное натяжение на контакте. Такие условия возникают при вытеснении нефти газами высокого давления, двуокисью углерода и мицеллярными растворами, которые практически полностью устраняют отрицательное влияние капиллярных сил на вытеснение нефти.

    Эти методы относятся к числу наиболее высокопотенциальных и перспективных, способных снижать остаточную нефтенасыщенность в зоне, охваченной рабочим агентом, до 2-5 % . Главное в применении этих методов - обеспечить высокий охват нефтяной залежи эффективным вытесняющим агентом. Эти методы имеют принципиальное значение, так как основная часть остаточной нефти на известных разрабатываемых месторождениях остается в виде заводненных остаточных запасов, которые будет значительно труднее извлекать, чем из не заводненных пластов.

    Газовые и водогазовые методы увеличения нефтеотдачи

    Вытеснение нефти из пласта двуокисью углерода (СО2)

    Воздействие на пласт двуокисью углерода. Двуокись углерода растворяется в воде гораздо лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры.

    При растворении в воде двуокиси углерода вязкость ее несколько увеличивается. Однако это увеличение незначительно. При массовом содержании в воде 3–5% двуокиси углерода вязкость ее увеличивается лишь на 20–30%. Образующаяся при растворении СО2 в воде угольная кислота Н2CO3 растворяет некоторые виды цемента и породы пласта и повышает проницаемость. В присутствии двуокиси углерода снижается набухаемость глиняных частиц. Двуокись углерода растворяется в нефти в четыре-десять раз лучше, чем в воде, поэтому она может переходить из водного раствора в нефть. Во время перехода межфазное натяжение между ними становится очень низким, и вытеснение приближается к смешивающемуся.

    Двуокись углерода в воде способствует отмыву пленочной нефти, покрывающей зерна и породы, и уменьшает возможность разрыва водной пленки. Вследствие этого капли нефти при малом межфазном натяжении свободно перемещаются в поровых каналах и фазовая проницаемость нефти увеличивается.

    При растворении в нефти СО2 вязкость нефти уменьшается, плотность повышается, а объем значительно увеличивается: нефть как бы набухает.

    Увеличение объема нефти в 1,5–1,7 раза при растворении в ней СО2 вносит особенно большой вклад в повышение нефтеотдачи пластов при разработке месторождений, содержащих маловязкие нефти. При вытеснении высоковязких нефтей основной фактор, увеличивающий коэффициент вытеснения, – уменьшение вязкости нефти при растворении в ней CO2. Вязкость нефти снижается тем сильнее, чем больше ее начальное значение.

    При пластовом давлении выше давления полного смешивания пластовой нефти с CO2 двуокись углерода будет вытеснять нефть, как обычный растворитель (смешивающее вытеснение). Тогда в пласте образуются три зоны: зона первоначальной пластовой нефти, переходная зона (от свойств первоначальной нефти до свойств закачиваемого агента) и зона чистого СО2. Если СО2 нагнетается в заводненную залежь, то перед зоной СО2 формируется вал нефти, вытесняющий пластовую воду.

    Увеличение объема нефти под воздействием растворяющегося в нем СО2 наряду с изменением вязкости жидкостей (уменьшением вязкости нефти и увеличением вязкости воды) – один из основных факторов, определяющих эффективность его применения в процессах добычи нефти и извлечения ее из заводненных пластов.

    Метод широко используется в США (месторождение Келли Снайдер. В пласт закачали 10 млрд. м3 СО2.) и на месторождении Будафа в Венгрии.

    Перспективы применения СО2 для увеличения нефтеотдачи пластов в нашей стране также весьма широкие. Составлены про­екты и проводятся необходимые подготовительные работы для нагнетания СО2 в нефтеносные пласты на многих место­рождениях (Козловское, Радаевское, Абдрахмановская площадь Ромашкинского месторождения, Сергеевское, Ольховское и др.)

    Преимущества:

    • Повышение КИНа

    • Легко найти необходимое количество данного агента

    • Хорошая смешиваемость с нефтью

    • Нет необходимости в новом оборудовании

    • Снижение сжигания попутного газа

    • Избежание штрафов за сжигание более 95% попутного газа (с 2012г.)

    Основные недостатки метода:

    1. Снижение коэффициента охвата вытеснением.

    2. Коррозия скважинного и нефтепромыслового оборудования.

    Сухой СО2 не коорозионно-активный, но при чередовании нагнетания его с водой или после смешивания с пластовой водой и при прорыве его в добывающие скважины он становится коррозионно-активным.

    3. Сложной технической проблемой является транспортировка жидкого СО2, подготовки нефти.

    4. СОпри условиях неполной смесимости с нефтью экстрагирует из нее легкие фракции, они смешиваются с газообразным углекислым газом, а тяжелые фракции нефти остаются в пласте и

    Водогазовое воздействие.

    Значительно раньше, чем заводнение с целью поддержания пластового давления и вытеснения нефти из истощенных пластов на многих месторождениях использовали технологию нагнетания природного или нефтяного газа. При этом вначале газ нагнетали в пласты при давлениях, не обеспечивающих смесимость его с нефтью. До применения искусственного заводнения нефтяных залежей технологию вытеснения нефти газом считали экономически вполне оправданной, так как она позволяла поддерживать дебиты скважин и повышать нефтеотдачу пологозалегающих пластов на 5-10% по сравнению с режимом растворенного газа, а крутозалегающих на 15-20%.

    Однако после широкого применения заводнения залежей с пологозалегающими пластами было однозначно установлено, что газ при не смешивающемся с нефтью вытеснении хуже как вытесняющий агент, чем вода, основная причина малой эффективности газа как вытесняющего агента -- его малая вязкость (в 10--15 раз ниже вязкости воды), обусловливающая его быстрые прорывы по крупнопористым и высокопроницаемым слоям (зонам) в добывающие скважины, резкое снижение их дебитов по нефти и охвата пластов вытеснением.

    Механизм процесса.

    В отличие от воды, которая в заводненной зоне гидрофильного пласта под действием капиллярных сил занимает мелкие поры и сужения, газ, закачанный в пласт, как несмачивающая фаза в загазованной зоне, наоборот, занимает крупные поры, а под действием гравитационных сил -- верхние части пласта. Эти особенности воды и газа привели к выводу о целесообразности совмещения достоинств воды и газа, с целью уменьшения их недостатков, применением их периодического, циклического нагнетания. Оптимальное соотношение объемов нагнетания воды и газа при таком воздействии должно быть пропорционально отношению объемов мелких пор (ниже среднего размера) и крупных пор (выше среднего размера) в коллекторе. Тогда можно рассчитывать на достижение максимального эффекта от совместного нагнетания воды и газа, т. е. от применения водогазовых смесей. При этом условии эффект от совместного чередующегося нагнетания воды и газа в пласты, т. е. вытеснения водогазовой смесью, будет обусловливаться тем, что фазовая проницаемость для смачивающей фазы зависит только от водонасыщенности, а наличие в пласте свободного газа увеличивает вытеснение нефти на величину предельной газонасыщенности (10 -- 15 %), при которой газ неподвижен.
    Реклама

    Эффективность и технология процесса.

    Поочередное нагнетание воды и газа способствует повышению охвата неоднородных пластов заводнением вследствие снижения относительной проводимости высокопроницаемых пропластков, занятых водогазовой смесью. Вытеснение нефти из неоднородных пластов водой и газом совместно при любой технологии также более эффективно для конечной нефтеотдачи, чем раздельно только водой или только газом. При оптимальном применении нефтеотдачу пластов можно увеличить на 7-15 % по сравнению с обычным заводнением. Главное условие оптимальности процесса водогазового воздействия на пласт -- обеспечить равномерное распределение нагнетаемого газа по заводняемому объему залежи, т. е. одновременный прорыв газа и воды в добывающие скважины. Это не всегда достижимо, поэтому эффективность может быть значительно ниже указанной, и тем ниже, чем однороднее пласт.

    Нагнетание газа и воды в пласты поочередно оторочками (продолжительность циклов по закачке одного агента составляет 10-30 суток) или одновременно в смеси через одну и ту же нагнетательную скважину также обладает большими недостатками.

    Приемистость (продуктивность) нагнетательной скважины для каждого рабочего агента после первого цикла резко снижается -- Для газа в 8-10 раз, а для воды в 4 --5 раз вследствие снижения фазовой проницаемости призабойной зоны пласта.

    Гравитационное разделение газа и воды в пласте может снижать эФфективность вытеснения нефти и охвата пласта процессом на 10 -- 20 % в зависимости от неоднородности пласта и соотношения вязкостей нефти и воды.

    Оборудование каждой нагнетательной скважины для по очередного нагнетания воды и газа значительно усложняется.

    Вследствие этих недостатков циклический метод водогазового воздействия на пласты требует значительного увеличения числа нагнетательных скважин для обеспечения необходимых объемов нагнетания рабочих агентов и отбора нефти, повышенных давлений нагнетания и сложного устьевого оборудования для нагнетательных скважин. Однако соответствующими технологическими и техническими решениями можно уменьшить и даже исключить отрицательное влияние этих факторов. Для этого требуются оптимальные условия вскрытия пластов в скважинах перфорацией, размещение их и эксплуатация, обеспечивающие изменение направления потоков и целенаправленное использование гравитационных эффектов.

    Высокое давление

    Вытеснение нефти из пластов сухим газом при давлении полной смесимости газа с углеводородами нефти называется методом вытеснения нефти газом высокого давления. Полная смесимость газа с нефтью достигается при давлениях 25-40 МПа.

    Закачка жирного углеводородного газа с содержанием метана менее 90 % называется вытеснением нефти обогащенным газом, при этомсмесимость газа с нефтью происходит при меньших давлениях.

    Особенно эффективно вытеснение газом применять для разработки слабопроницаемых нефтяных пластов.

    В процессе смешивающегося вытеснения нефти обогащенным газом происходят сложные физико-химические явления между пластовой нефтью и закачиваемым газом.

    Если происходит полное смешение газа и нефти, то вязкость и плотность смеси уменьшается.

    Если вытеснение нефти происходит в условиях неполной смесимости, то часть закачиваемого газа находится в свободном состоянии. Свободный газ экстрагирует более легкие углеводороды из нефти, т.е. более легкие углеводороды выделяются из нефти и смешиваются с газом. Газ, обогащенный легкими углеводородами нефти, прорывается к скважинам, а основная часть нефти, лишенная своих легких фракций, становится более вязкой. Это приводит к снижению эффективности вытеснения газом.

    Закачка обогащенного газа высокого давления впервые в России была осуществлена на Ключевом месторождении легкой нефти в Краснодарском крае,

    Хорошим решением для увеличения нефтеотдачи методом водогазового воздействия (ВГВ) на пласт может стать ВГВ с использованием насосно-эжекторных систем, позволяющих готовить на поверхности водогазовую смесь и закачивать её в пласт в широком диапазоне расходов и давлений оборудованием, которое может успешно эксплуатироваться в промысловых условиях российских месторождений [1 – 3]. На рисунке 1 показана принципиальная схема насосно-эжекторной системы.



    Рисунок 1 – Принципиальная схема насосно-эжекторной системы.

    При работе системы силовой насос нагнетает воду в сопло эжектора, который откачивает попутный нефтяной газ. Далее водогазовая смесь нагнетается дожимным насосом в пласт.

    При реализации насосно-эжекторной технологии может использоваться существующая инфраструктура системы поддержания пластового давления. Не требуется строительство отдельных высоконапорных газопроводов и газонагнетательных скважин сложной конструкции с необходимым для высоких давлений устьевым и подземным оборудованием. Кроме того, технология может быть при необходимости внедрена на всем месторождении в целом, а не только на отдельных скважинах и опытно-промышленных участках. Насосно-эжекторные системы по сравнению с известными решениями более просты, надежны, менее металлоемки и гораздо дешевле.

    В 2015 году было проведено первое внедрение насосно-эжекторной системы для водогазового воздействия, разработанной ранее авторами данной работы [4] и изготовленной АО «Новомет-Пермь», на установке предварительного сброса воды (УПСВ) Самодуровского месторождения ПАО «Оренбургнефть». На рисунке 2 показана схема системы.



    Рисунок 2 – Схема насосно-эжекторной системы на Самодуровском местрождении

    В системе предусмотрено резервирование насосного и эжекторного оборудования, чтобы обеспечить работоспособность системы в случае отказа одного из её элементов путем переключения на резервный насос или эжектор.

    Вода нагнетается в сопло эжектора насосом кустовой насосной станции (КНС) ЦНС-240-1422, который также закачивает воду в нагнетательные скважины месторождения, не относящиеся к участку водогазового воздействия. Эжектор откачивает газ первой ступени сепарации и подает водогазовую смесь на вход дожимного горизонтального многоступнчатого центробежного насоса ЭЦН8-1600-1450. Рабочие параметры системы: расход воды – 1535 м3/сут, расход газа – до 20000 м3/сут, давление газа на приеме 0,2-0,4 МПа, давление нагнетания смеси – до 13 МПа. Установка водогазового воздействия переведена в круглосуточную эксплуатацию в июле 2015 года для нагнетания смеси в 11 скважин внешнего распределительного пункта ВРП-2 Самодуровского месторождения и работает уже второй год. Насосно-эжекторная система адаптируется к изменяющимся условиям эксплуатации, полностью забирает попутный газ первой ступени сепарации Самодуровского, Ефремо-Зыковского и Спасского месторождений. Кроме того, по газопроводу на вход насосно-эжекторной системы компрессором низкого давления подается также ПНГ с соседнего Пономаревского месторождения. Насосно-эжекторная система устойчиво работает на УПСВ Самодуровского месторождения в различных режимах, срывов подачи эжекторов и насосов не было.

    Таким образом, результаты выполненных ранее теоретических и экспериментальных исследований [1 – 3], на основе которых была разработана технология ВГВ с применением насосно-эжекторных систем, подтвердились при внедрении на промысле.

    Вместе с тем опыт эксплуатации системы на Самодуровском месторождении позволил наметить также мероприятия по совершенствованию самой технологии водогазового воздействия на пласт с применением насосно-эжекторных систем.

    Первое из этих предложений направлено на использование для ВГВ попутного нефтяного газа не только первой ступени сепарации, а ещё и газа второй и концевой ступеней сепарации, который сейчас сгорает на факеле.

    Второе из этих мероприятий позволит сосредоточить закачку водогазовой смеси с повышенным газосодержанием в одну или несколько нагнетательных скважин, которые наиболее подходят для повышения нефтеотдачи путем водогазового воздействия.

    Третье предложение связано с тем, что эффективность водогазового воздействия на пласт во многом зависит от степени устойчивости водогазовых смесей. Создание стабильных систем, в которых подавлена коалесценция газовых пузырьков, даст возможность избежать расслоения водогазовой смеси в водоводах и нагнетательных скважинах, что значительно снизит требуемые давления закачивания водогазовой смеси. Устойчивые пузырьки в водогазовой смеси при вытеснении нефти из пласта будут проникать в самые мелкие поры, растворяться в остаточной нефти, увеличивать её подвижность и повышать прирост коэффициента извлечения нефти. При подавленной коалесценции газовых пузырьков снизится влияние свободного газа на работу многоступенчатых центробежных насосов. Это позволит широко использовать их при реализации водогазового воздействия с применением насосно-эжекторных систем.

    В связи с этим были проведены специальные стендовые исследования условий подавления коалесценции газовых пузырьков в жидкости применительно к технологии водогазового воздействия на пласт с использованием насосно-эжекторных систем.

    Оказалось, что коалесценцию газовых пузырьков, введенных в жидкость, удается в ряде случаев подавить при добавлении различных солей. Эксперименты проводили на стенде – макете насосно-эжекторной системы, схема которого представлена на рисунке 3.


    написать администратору сайта