Главная страница
Навигация по странице:

  • Общий вид закона Ома

  • Кирхгоф Густав Роберт

  • Законы Кирхгофа

  • Реферат Закон Ома и закон Кирхгофа1. Закон Ома и закон Кирхгофа


    Скачать 78 Kb.
    НазваниеЗакон Ома и закон Кирхгофа
    АнкорРеферат Закон Ома и закон Кирхгофа1.doc
    Дата21.06.2022
    Размер78 Kb.
    Формат файлаdoc
    Имя файлаРеферат Закон Ома и закон Кирхгофа1.doc
    ТипРеферат
    #607362

    МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

    Федеральное государственное бюджетное образовательное учреждение

    высшего образования «АРКТИЧЕСКИЙ ГОСУДАРСТВЕННЫЙ АГРОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»


    Реферат
    По дисциплине: Электротехника

    На тему: «Закон Ома и закон Кирхгофа»


    3 курс группа АИ-18

    Ильин Павел Максимович

    Октемцы 2021 г.

    Содержание
    Введение………………………………………………………………………..….3

    1. Краткая биография Ома, история открытия закона……………………...4

    1. Общий вид закона Ома………………………………………………….…6

    2. Краткая биография Кирхгофа………………………………………….….8

    3. Общий вид законов Кирхгофа……………………………………………11

    Заключение…………………………………………………………..…….……..14

    Список литературы………………………………………………………..……..15


    Введение



    Физическое действие электрического тока проявляется в нагреве и механическом воздействии на токоведущие элементы электротехнического устройства. В конечном итоге это влияет на долговечность и надежность его работы. Перегрев токоведущих элементов устройства в первую очередь вызывает интенсивный износ изоляции, что, в конечном счете, приводит к короткому замыканию сопровождаемому, как правило, электрической дугой. Превышение механических усилий своего допустимого значения приводит к разрушению устройства, затем – к короткому замыканию. Поэтому первым этапом расчета электротехнического устройства, ставится задача определения величин токов в элементах устройства. При этом считается, что конфигурация и параметры элементов схемы электрической цепи устройства известны.

    Наиболее общими, универсальными законами, позволяющими рассчитать любую электрическую цепь, являются законы Кирхгофа.

    1. Краткая биография Ома, история открытия закона



    Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, окончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

    Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.

    В 1811 году он возвращается в Эрланген, оканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

    В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания «Наиболее оптимальный вариант преподавания геометрии в подготовительных классах». Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием «Предварительное сообщение о законе, по которому металлы проводят контактное электричество». Статья была опубликована в 1825 году в «Журнале физики и химии», издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.

    Появляется в свет его знаменитая статья «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии».

    В мае 1827 года «Теоретические исследования электрических цепей» объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: «Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение».

    В 1829 году появляется его статья «Экспериментальное исследование работы электромагнитного мультипликатора», в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.

    В 1830 году появляется новое исследование Ома «Попытка создания приближенной теории униполярной проводимости».

    Только в 1841 году работа Ома была переведена на английский язык, в 1847 году - на итальянский, в 1860 году - на французский.

    16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.

    Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.

    В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления - 1 Ом.


    1. Общий вид закона Ома


    Закон Ома устанавливает зависимость между силой токаI в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника:
    (1)
    Коэффициент пропорциональности R, зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. Закон Ома был открыт в 1826 нем. физиком Г. Омом.

    В общем случае зависимость междуIи U нелинейна, однако на практике всегда можно в определенном интервале напряжений считать её линейной и применять закон Ома; для металлов и их сплавов этот интервал практически неограничен.

    Закон Ома в форме (1) справедлив для участков цепи, не содержащих источников ЭДС. При наличии таких источников (аккумуляторов, термопар, генераторов и т. д.) закон Ома имеет вид:
    (2)
    где — ЭДС всех источников, включённых в рассматриваемый участок цепи. Для замкнутой цепи закон Ома принимает вид:
    (3)
    где

    - полное сопротивление цепи, равное сумме внешнего сопротивления r и внутреннего сопротивления источника ЭДС. Обобщением закона Ома на случай разветвлённой цепи является правило 2-е Кирхгофа.

    Закон Ома можно записать в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное. электрическое поле напряжённости Е, создаваемое в проводниках микроскопическими зарядами (электронами, ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т. к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках ЭДС и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряженностьюEСТ, называемого сторонним. Полная напряженность поля, действующего внутри проводника на заряды, в общем случае равна E+EСТ. Соответственно, дифференциальный закон Ома имеет вид:
    или , (4)
    где - удельное сопротивление материала проводника, а - его удельная электропроводность.

    Закон Ома в комплексной форме справедлив также для синусоидальных квазистационарных токов:
    (5)
    где z - полное комплексное сопротивление:
    ,
    r– активное сопротивление, а x - реактивное сопротивление цепи. При наличии индуктивности L и емкости С в цепи квазистационарного тока частоты
    .

    2. Краткая биография Кирхгофа


    Кирхгоф Густав Роберт (12.03.1824 – 17.10.1887) - немецкий физик.

    Густав Кирхгоф родился в Кенигсберге в семье юриста. Окончив гимназию, он поступил в Кенигсбергский университет. После окончания университета Кирхгоф некоторое время преподавал в Берлине. В 1854 г. по совету химика Р. Бунзена Кирхгофа приглашают в Гейдельбергский университет, с которым связаны многие годы его небогатой внешними событиями жизни. Лишь безвременная смерть жены, оставившей ему четверых детей, и нелепый случай, сделавший его калекой, вынужденным передвигаться на кресле или с костылями, нарушили размеренный ход его жизни. Л. Больцман писал об этом так: «В жизни Кирхгофа не было ничего выдающегося, что соответствовало бы необычности его гения. Его жизнь была обычной жизнью немецкого профессора университета. Великие события происходили исключительно в его голове».

    В начале своей научной деятельности Кирхгоф еще студентом начал исследовать законы распространения тока в электрических цепях. В 1849 г. он сформулировал свои знаменитые правила, которые до сих пор применяются для их расчета. В 1857 г. он опубликовал работу о распространении переменных токов по проводам, некоторые выводы которой предвосхитили теорию электромагнитного поля Максвелла.

    Однако главный цикл работ Кирхгофа в Гейдельберге – анализ спектров излучения. Еще в 1855 г., сразу по приезде в Гейдельберг, Кирхгоф присоединился к исследованиям Р. Бунзена, который пытался установить химический состав солей по цвету пламени горелки (сейчас она так и называется бунзеновской горелкой). Кирхгоф сразу же заметил, что значительно более эффективным тестом на наличие того или иного вещества является анализ линейчатых спектров испускания этих веществ. Он сконструировал с помощью Бунзена новый, более совершенный, чем прежние, призматический спектроскоп и определил линии спектров множества элементов, открыв в процессе работы новые элементы - цезий и рубидий. Таким образом, Кирхгоф и Бунзен могут считаться создателями спектрального анализа, т.е. экспериментальной основы современной астрофизики.

    Работа Кирхгофа по изучению спектров испускания элементов привела его к заключению о связи между спектральными линиями и темными линиями, обнаруженными Фраунгофером в спектре Солнца. Кирхгоф показал, что знаменитая желтая D-линия в спектре испускания натрия точно соответствует двум темным линиям в солнечном спектре. Это привело его к выводу, что атмосфера Солнца содержит натрий и этот натрий поглощает из непрерывного спектра солнечного излучения как раз ту часть, которая имеет длину волны, равную длине волны D-линии. Свою догадку Кирхгоф проверил в лаборатории, имитировав солнечный свет светом бунзеновской горелки и внеся в ее пламя поваренную соль.

    Изучение связи между испусканием и поглощением излучения привело Кирхгофа к исследованию излучения нагретых тел. В 1862 г. он ввел понятие абсолютно черного тела и в качестве идеального излучателя (модель черного тела) предложил металлическую нагретую полость с маленькой дырочкой. Он сформулировал, опираясь на термодинамические соотношения, важнейший закон излучения черного тела: спектр излучения является универсальной функцией длины волны и температуры. Исследование излучения абсолютно черного тела стало на несколько десятилетий одной главных задач экспериментаторов и головной болью для теоретиков, так как классическая физика не могла объяснить наблюдаемого спектра излучения. Загадку излучения абсолютно черного тела разрешил в 1900 г. своей гипотезой квантов М. Планк, ученик Г. Кирхгофа. Поэтому без преувеличения можно сказать, что Кирхгоф внес важный вклад и в создание квантовой механики.

    Кирхгоф был прекрасным лектором, хотя иногда немного суховатым. Правда, затем он великолепно редактировал и издавал свои лекции по разным вопросам теоретической физики. Многие германские физики в течение нескольких десятилетий учились по изданным лекциям Кирхгофа.

    Несмотря на болезнь, лишавшую его подвижности, Кирхгоф был неутомимым исследователем и живым, интересным собеседником, любившим шутку. Однажды его банкир, под впечатлением от рассказов Кирхгофа о возможности определить химический состав Солнца, спросил: «Какой толк в том, что на Солнце есть золото, если я не могу перенести его на Землю и пощупать?» Несколькими годами спустя Кирхгоф получил золотую медаль Лондонского королевского общества и большую премию в золотых соверенах за свои исследования. Он вызвал своего банкира и передал ему свою награду, заметив шутливо: «Вот ваше золото из Солнца!»

    3. Общий вид законов Кирхгофа



    Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.

    Середина XIX века как раз стала временем активных исследований свойств электрических цепей, и результаты этих исследований быстро находили практические применения. Базовые правила расчета простых цепей, такие как закон Ома, были уже достаточно хорошо проработаны. Проблема состояла в том, что из проводов и различных элементов электрических цепей технически уже можно было изготовлять весьма сложные и разветвленные сети — но никто не знал, как смоделировать их математически, чтобы рассчитать их свойства. Кирхгофу удалось сформулировать правила, позволяющие достаточно просто анализировать самые сложные цепи, и законы Кирхгофа до сих пор остаются важным рабочим инструментом специалистов в области электронной инженерии и электротехники.

    Оба закона Кирхгофа формулируются достаточно просто и имеют понятную физическую интерпретацию. Первый закон гласит, что если рассмотреть любой узел цепи (то есть точку разветвления, где сходятся три или более проводов), то сумма поступающих в цепь электрических токов будет равна сумме исходящих, что, вообще говоря, является следствием закона сохранения электрического заряда. Например, если вы имеете Т-образный узел электрической цепи и по двум проводам к нему поступают электрические токи, то по третьему проводу ток потечет в направлении от этого узла, и равен он будет сумме двух поступающих токов. Физический смысл этого закона прост: если бы он не выполнялся, в узле непрерывно накапливался бы электрический заряд, а этого никогда не происходит.

    Второй закон не менее прост. Если мы имеем сложную, разветвленную цепь, ее можно мысленно разбить на ряд простых замкнутых контуров. Ток в цепи может различным образом распределяться по этим контурам, и сложнее всего определить, по какому именно маршруту потекут токи в сложной цепи. В каждом из контуров электроны могут либо приобретать дополнительную энергию (например, от батареи), либо терять ее (например, на сопротивлении или ином элементе). Второй закон Кирхгофа гласит, что чистое приращение энергии электронов в любом замкнутом контуре цепи равно нулю. Этот закон также имеет простую физическую интерпретацию. Если бы это было не так, всякий раз, проходя через замкнутый контур, электроны приобретали или теряли бы энергию, и ток бы непрерывно возрастал или убывал. В первом случае можно было бы получить вечный двигатель, а это запрещено первым началом термодинамики; во втором — любые токи в электрических цепях неизбежно затухали бы, а этого мы не наблюдаем.

    Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях.

    В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

    В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Пример параллельной цепи является — ламп «лесенкой»: напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по второму закону Кирхгофа.

    Заключение



    Наша работа позволяет сделать вывод о том, Правила Кирхгофа и Ома позволяют однозначно и полно рассчитать любую электрическую цепь. Широкое применение этих правил объясняются тем, что систему уравнений цепи по ним достаточно легко составить и решить, применяя стандартные способы линейной алгебры, такие, как метод Гаусса или метод Крамера.

    Мы пришли к выводу о том, что хотя по школьной программе на рассмотрение данной темы очень мало отводится времени, учащиеся могут более или менее успешно овладеть методами решения задач данного типа. Такие типы задач часто встречаются в олимпиадных заданиях, но базируются они на школьном курсе

    Список литературы





    1. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учеб. для вузов /Л.А. Бессонов. – 10-е изд. – М.: Гардарики, 2000. – 638с.: ил.

    2. Гольдин О.Е. и др. Программированное изучение теоретических основ электротехники: Учебное пособие. /О.Е. Гольдин, А.Е. Каплянский, Л.С. Полотовкский. – М: Высшая школа, 1978. –287с.: ил.

    3. Сборник задач и упражнений по теоретическим основам электротехники: Учебное пособие для вузов. /Под ред. П.А. Ионкина. – М.: Энергоиздат, 1982. – 767с.: ил. 4. Сборник задач по теоретическим основам электротехники: Учебное пособие для вузов. /Под ред. Л.А. Бессонова. – 3-е изд., переработ. и доп. – М.: Высшая школа, 1980. – 472с.: ил

    4. Сборник задач по теоретическим основам электротехники: Учеб. пособие для вузов /Под ред. Л.А. Бессонова. – 3-е изд., переработ. и доп. – М.: Высшая школа, 1988. – 543с.: ил.

    5. Репьев Ю.Г., Семенко Л.П., Поддубный Г.В. Теоретические основы электротехники. Теория цепей. – Краснодар: Краснодарский политехнический институт, 1990. – 299с.

    6. Огорелков, Б.И. Методические указания к РГЗ № 1 по ТОЗ. Анализ установившихся процессов в электрических цепях постоянного тока /А.Н. Ушаков, Н.Ю. Ушакова, Б.И. Огорелков.– Оренбург: ОрПтИ, 1987. –46с.

    7. Методы расчета электрических цепей постоянного тока: Методические указания /Б.И. Огорелков, А.Н. Ушаков, Н.Ю. Ушакова. – Оренбург: ОрПтИ, 1990.-45с.




    написать администратору сайта