Главная страница

Курсовая работа. Курсовая работа 3 курс. 1 Физические свойства металлов и сплавов 4 2 Химические свойства металлов и сплавов 9 1 Взаимодействие с простыми веществами 9


Скачать 72.77 Kb.
Название1 Физические свойства металлов и сплавов 4 2 Химические свойства металлов и сплавов 9 1 Взаимодействие с простыми веществами 9
АнкорКурсовая работа
Дата27.04.2022
Размер72.77 Kb.
Формат файлаdocx
Имя файлаКурсовая работа 3 курс.docx
ТипРеферат
#501257
страница5 из 6
1   2   3   4   5   6

4.2 Эксплуатационные свойства



Эксплуатационными свойствами являются износостойкость, коррозионная стойкость, жаростойкость, жаропрочность, хладностойкость, антифрикционность, флокеночувствительность.

Износостойкость  способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость  способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкость  это способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность  это способность материала сохранять свои свойства при высоких температурах.

Хладностойкость – способность материала сохранять пластические свойства при отрицательных температурах.

Антифрикционность  способность материала прирабатываться к другому материалу.

Флокеночувствительность  это склонность стали или сплавов к поражению их внутреннего строения.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства 2 с. 52.

5 Методы выявления дефектов без разрушения деталей



В современной практике широко применяется безобразцовый (внелабораторный) контроль качества не только соединяемых деталей (изделий), но и отдельных полуфабрикатов, конструкций и сооружений. В практике этот метод известен как неразрушающий (без разрушения деталей) контроль качества деталей, изделий и конструкций, который широко применяется в условиях производства и эксплуатации различных систем.

Этот метод используют для определения внешних и внутренних дефектов без разрушения деталей, к которым относятся узлы и изделия в крупногабаритных машинах, соединенных между собой различными видами сварки, паянием, болтовыми и резьбовыми соединениями, клепкой. Кроме того, безобразцовому контролю подвергают отливки, прокат, поковку и штамповку.

С помощью этого метода определяется химический состав различных металлов и сплавов, из которых изготовлены изделия, несоответствие которого стандарту может приводить к дефектам в процессе эксплуатации.

Большинство дефектов можно обнаружить неразрушающим методом контроля. Неразрушающие методы контроля по сравнению с образцовым контролем качества изделий имеют большие преимущества и более эффективны. Эти методы позволяют экономить конструкционные материалы, быстро и качественно определять дефекты.

Неразрушающие методы контроля качества деталей и обнаружения в них дефектов проводятся по следующей технологической схеме: помещение исследуемого объекта в контролируемую среду; выявление с помощью приборов дефектов (состава материала, внешних параметров, погрешности форм и размеров и т. д.); преобразование полученных параметров в показатели, удобные для расшифровки и расшифровка полученных данных 9.

Методы неразрушающего контроля подразделяются на следующие виды:

  • внешний контроль;

  • контроль технологических режимов;

  • физический (инструментальный) контроль.

Внешний контроль это визуальный осмотр изделия (детали), сварного или иного соединения. Внешний контроль иногда проводят с помощью лупы или специального микроскопа. По внешнему осмотру определяют, прежде всего, качество отливки, поковки, проката, сварки и т. д. В изделиях, полученных прокатом, ковкой и литьем, при внешнем осмотре выявляются следующие дефекты: расслоение, вырыв, свищи, флокены, инородные металлические и неметаллические включения, кованые трещины, отпечатки литейной формы, дефекты и искажения поверхности и формы прокатанных, кованых и литых изделий, чешуйчатость, рябизна, остатки окалины, заусенцы и другие дефекты, понижающие качество изделий в целом и ухудшающие их эксплуатационные свойства.

При внешнем осмотре отливок обнаруживаются следующие дефекты: узорчатая поверхность, пригар, шероховатость поверхности (следы материалов земляной литьевой формы), вскипы, образованные кипением заливаемого в форму металла, недоливы, ужимы, усадочные раковины, трещины, газовые раковины, несоответствующие форме, размерам, и несоосность. Дефекты, обнаруженные внешним осмотром, могут быть как устранимыми, так и неустранимыми.

В сварных соединениях, например в различных трубопроводах (нефтегазовая, химическая промышленность, жилищно-коммунальное хозяйство и другие отрасли), внешний контроль является особенно важным. Невооруженным глазом или с помощью лупы проводят внешний осмотр сварного шва, выявляя типичные дефекты при сварке: перекос соединяемых деталей со смещением кромок, неравномерный (ослабленный или чрезмерно усиленный) шов, непровар, трещины, ноздреватость, кратеры и др. 24.

Контроль технологических режимов  это контроль соблюдения всех режимов производства полуфабрикатов (литья, проката, волочения, ковки, сварки, паяния, винтового и клепаного соединений и др.). В каждом производстве есть свои особенности технологических процессов, за которыми следят по приборам или проводят автоматический контроль или внешнее наблюдение. В случае нарушения технологии для предотвращения дефектов дается определенная команда или делаются соответствующие выводы. Контроль технологических режимов обеспечивает получение качественных деталей, изделий и конструкций из различных материалов. При сварке важным параметром является выбор электрода и величины сварочного тока, а также проведение отжига сварного шва и околошовной зоны, при литье  температура заливки сплава, конструкции литейной формы и технологические операции, проводимые после охлаждения отливок (отжиг, нормализация, механическая обработка).

Физические (инструментальные) методы контроля основаны на применении переносных электронно-вычислительных (или шкальных) приборов. Физические методы контроля позволяют определить как наружные, так и внутренние дефекты деталей, узлов, изделий и сооружений.

Каждый из физических методов имеет свои особенности и разновидности. Например, радиационный метод контроля имеет три разновидности:

  • радиографический  позволяет выявлять и документально фиксировать дефекты;

  • радиоскопический позволяет выявлять дефекты и наблюдать за ними на экране монитора (прибора);

  • радиометрический  основан на проникновении γ-излучений в исследуемый узел. В случае внутренних дефектов приборы фиксируют и дают показания на соответствующей шкале прибора.

Физические методы контроля с помощью ультразвуковых дефектоскопов, измерительных технологий, ультразвуковых толщиномеров и течеискателей, смонтированных на передвижных лабораториях, дают большой экономический эффект в различных отраслях экономики 3.
1   2   3   4   5   6


написать администратору сайта