Главная страница

1. Физиология как наука


Скачать 2.32 Mb.
Название1. Физиология как наука
Дата10.09.2019
Размер2.32 Mb.
Формат файлаpdf
Имя файлаnormalnaya_fiziologia_ekz.pdf
ТипДокументы
#86494
страница5 из 33
1   2   3   4   5   6   7   8   9   ...   33
13. Нейрон…
Нейрон - это структурно-функциональная единица нервной ткани. Это специализированная клетка, которая, наряду с общими физиологическими свойствами (возбудимость, проводимость), обладает и рядом
специфических свойств. А именно:
1. Воспринимать информацию (переводить информацию раздражителя на биологический язык клетки).
2. Обрабатывать информацию (т.е. проводить анализ информации, синтез - соединение различных частей информации после анализа с получением нового качества).
3. Кодировать информацию (превращать информацию в форму удобную для хранения в мозге).
4. Формировать командный управляющий сигнал, который распространяется на другие клетки (нейроны, мышечные клетки).
5. Передача информации нейрона на другие структуры.
Нейроны способны контактировать с другими клетками и оказывать на них информационное воздействие
(место контактов - синапс).
Все свои виды деятельности нейрон осуществляет за счѐт 3-х физиологических свойств (помимо
возбудимости и проводимости):
1. Рецепция;
2. Электрогенез;
3. Нейросекреция.
Функционально нейроны делятся на три типа:
- афферентные (чувствительные);
- промежуточные (вставочные) нейроны (формируют ЦНС);
- эфферентные (отправляют к периферическим органам команды ЦНС).
14. Рецепторная функция нейронов…
Рецептором в нейроне называются специализированные образования, предназначенные для восприятия клетками (нейронами) или всей нервной системой действия раздражителей. Различают два типа рецепторов:
1. Сенсорные рецепторы.
2. Клеточные химические рецепторы.
Хеморецепторы нейронов к большому числу специфических и неспецифических химических
раздражителей внутренней и внешней среды.
Сенсорные рецепторы - это нервные окончания, чувствительные участки нейрона, которые способны воспринимать другие нехимические виды раздражения.
Например, рецепторы давления, температурные рецепторы, рецепторы сдвига и т.д., для которых раздражителем является нехимическая молекула.
Кроме того, все рецепторыделят на первично-чувствительные и вторично-чувствительные.
Первично-чувствительные рецепторы - это рецепторы нейронов, которые воспринимают химические и др. виды раздражения (давления, температуры и т.д.).
Вторично-чувствительные рецепторы - это специализированные нервные клетки, функцией которых является восприятие раздражения и передача его на афферентные окончания нейрона.
Все рецепторы (первично-чувствующие, вторично-чувствующие) можно разделить на экстерорецепторы и
интерорецепторы.
Экстерорецепторы - это такие образования нейрона, которые воспринимают раздражения, поступающие из
внешней среды.

Интерорецепторы - это такие рецепторы, которые постоянно собирают информацию о деятельности
внутренних органов и о состоянии внутренней среды организма.
Интерорецепторы делятся на множество групп:
1) проприорецепторы (они заложены в мышцах и сухожилиях);
2) ангиорецепторы (рецепторы, располагающиеся в сосудистом русле);
3) тканевые рецепторы (специальные образования, отслеживающие внутренний гомеостаз, постоянства внутренней среды организма);
Все рецепторы обладают чувствительностью. Чувствительность рецепторов характеризуется порогом
чувствительности.
Под порогом чувствительности понимают минимальную силу раздражителя, которая способна вызвать формирование рецепторного или генераторного потенциала. Возникновение рецепторного потенциала, т.е. электрического явления на рецепторе связано с тем, что раздражитель вызывает частичную деполяризацию мембраны. Это приводит к вхождению небольшой порции натрия (Na) локально в области рецептора из окружающей среды в нейрон, и в мембране рецептора возникает частичная деполяризация - это и есть генераторный или рецепторный потенциал. Он не распространяется, лишь суммация (временная или
пространственная) позволяет нескольким рецепторным потенциалам сформировать потенциал действия, и он
(потенциал действия) распространяется по нервным волокнам.
Под действием раздражителей рецепторы могут изменять свои свойства. Одним из таких проявлений является
адаптация рецепторов.
Под адаптацией рецепторов понимают изменение их чувствительности при длительном действии раздражителя.
По адаптивным способностям рецепторы различают:
1) слабо-адаптирующиеся (они служат для восприятия истинных, абсолютных, мгновенных значений раздражителя);
2) быстро- и полностью адаптирующиеся рецепторы (они воспринимают информацию об изменении стимула на фоне спонтанной импульсации).
Функционально рецепторы делятся на:
а) полимодальные ;б) мономодальные; в) бимодальные.
Мономодальные рецепторы - это такие рецепторы, для которых специфическим (т.е. родным) является только один раздражитель.
Бимодальные рецепторы - это такие рецепторы, которые формируют два ощущения (т.е. рецепторы воспринимают две модальности - температуру и боль, ощущение сдвига и боль и т.д.).
Полимодальные рецепторы - это рецепторы, которые воспринимают несколько раздражителей, как специфические.
Рецепторы бывают спонтанно-активные и молчащие.
Спонтанно-активные рецепторы - это такие рецепторы, которые, мониторируя процесс, постоянно генерируют импульсы и посылают их в ЦНС.
Молчащие рецепторы - это такие рецепторы, которые, мониторируя процесс, посылают импульсы в ЦНС только тогда, когда имеются отклонения от нормальной деятельности.
Интенсивность воздействия на рецепторы кодируется 2-мя способами:
1. Числом потенциалов действия от рецептора за единицу времени.
2. Числом рецепторов, а значит и нервных волокон, вовлечѐнных в процесс восприятия (чем больше рецепторов вовлечено в процесс восприятия, тем больше стимул, который поступает в ЦНС).
Рецепторы почти всегда передают свою информацию на нервные проводники. Такими нервными проводниками являются периферические отростки нейронов.
Они делятся на два типа:
1) афферентные проводники (дендриты);2) эфферентные проводники (аксон).
15. Электрогенез нейронов…
Вторым, по значению, свойством нейрона является электрогенез - т.е. формирование электрической активности нейрона. Два вида активности : Спонтанная активность и вызванная активность
Спонтанная активность- это самопроизвольная активность.
Вызванная активность возникает под действием раздражителей
Исходно все нейроны могут быть разделены на: спонтанно-активные (фоноактивные нейроны), молчащие
нейроны (нефоноактивные нейроны).
Фоноактивные нейроны - это такие нейроны, которые продуцируют потенциалы действия спонтанно, без внешних раздражителей, вследствие особенностей своего обмена веществ. Кроме того, спонтанная активность нейрона нередко обусловлена спонтанной активностью его рецепторного аппарата.
Молчащие нейроны - это такие нейроны, которые без внешнего стимула не отвечают потенциалом действия.
Спонтанно-активные нейроны тоже меняют свою активную деятельность под действием раздражителя.
По своей исходной активности могут быть разделены на три группы:
1. Группы нейронов, которые обладают спонтанной одиночной активностью (в состоянии покоя).

2. Нейроны с более организованной спонтанной активностью. Они обладают "пачковой" спонтанной
активностью. Обычно в "пачке" электрической активности насчитывается 5-6 пиков потенциала действия.
Обычно межимпульсовый интервал, т.е. временной интервал между импульсами в "пачке", составляет от 1 до 3 миллисекунд. Между "пачками" интервал варьирует в пределах 15-120 миллисекунд.
3. Спонтанные нейроны обладают групповой активностью. Обычно в группе нейронов насчитывают от 6 до 20 импульсов. Группой они кодируют информацию очень сложно и межинтервальное время колеблется внутри "пачки" от 3 до 30 миллисекунд, время формирования между группами колеблется от 50 до 200 миллисекунд.
Электрическая активность клетки отражает кодировку информации, которую нейрон либо воспринимает и кодирует, либо производит и, кодируя ее на электрический язык, передает по аксону другой клетке. Т.е. электрическая активность - это кодировка информации.
Существует несколько видов кодировки информации:
1. неимпульсная кодировка информации
2. импульсная кодировка информации
Группа нейронов способна к пространственно-временной кодировке информации.
Неимпульсная кодировка информации - это кодировка информации за счет изменения уровня потенциала мембраны и КУД.
При действии постоянного тока на ткань нейрон использует оба приема неимпульсной кодировки информации.
Кодировка проявляется функционально - изменением возбудимости.
Импульсная кодировка информации осуществляется за счет изменения частотных характеристик и конфигурации импульсов при ответной реакции.
При вызванной электрической активностьи информация кодируется межимпульсными интервалами, а так же продолжительностью латентного /скрытого/ периода (период от нанесения раздражения до появления активной реакции).
16. Нервные проводники…
Нервные проводники обладают 2-мя важнейшими физиологическими свойствами: возбудимостью и
проводимостью.
Прежде всего, они отличаются друг от друга проводимостью (способностью проводить возникшее возбуждение).
Мерой проводимости является скорость проведения возбуждения. Скорость проведения возбуждения зависит от толщины проводника (чем толще проводник, тем больше скорость проведения возбуждения).
Все волокна по толщине, а значит и по скорости проведения возбуждения, могут быть разделены на 3 группы: А,
В, С.
Волокна А и В относятся к миелинизированным волокнам, а волокна С - немиелинизированные.
Волокна группы А делятся на 4 подгруппы:
1)А-альфа. Диаметр=13-22 мк; скорость проведения 70-120 м/с. К ним относятся эфферентные волокна скелетных мышц, кроме того афферентные волокна от рецепторов мыщц (мышечных веретѐн);
2)А-бета. Диаметр=8-13 мк; скорость- 40-70 м/с. К ним относятся афферентные волокна от рецепторов давления и тактильных рецепторов (воспринимающих прикосновение);
3)А-гамма. Диаметр=4-8 мкм; скорость проведения возбуждения 15-40 м/с. К ним относится большое число афферентных волокон;
4)А-дельта. Диаметр=1-4 мкм; скорость проведения возбуждения 5-15 м/с. К ним относятся афферентные волокна от рецепторов боли и температур
Волокна В - это преганглионарные волокна вегетативной нервной системы.
Волокна С - это постганглионарные волокна вегетативной нервной системы.
Законы проведения возбуждения
1.Закон двухстороннего проведения. В изолированном нервном проводнике возбуждение распространяется в двух направлениях
2.Закон физиологической целостности /анодный блок, катодическая депрессия - анатомическая целостность сохранена, физиологическая нарушена/
3.Закон изолированного проведения возбуждения/возбуждение не переходит с волокна на волокно, изоляция- швановские клетки/
Механизмы проведения возбуждения
В безмякотных волокнах – последовательно за счет разности потенциалов между возбужденным и невозбужденным участком. В мякотных волокнах – скачкообразно /сальтоторно/, может через 2-3 перехвата
Раньве.
17.
Нейросекреция…
Нейросекреция - это способность нейрона синтезировать различные химические соединения, которые обладают биологической активностью.
Нейроны выделяют с помощью нейросекрета две группы веществ:
1. нейрогормоны - они выделяются специализированным нейроном, его телом, аксоном в межклеточную жидкость, во внутреннюю среду организма и там вызывают изменения, воздействуя на специфические для них клеточные рецепторы.

2. медиаторы - это тоже биологически активные вещества, они также синтезируются в нервных клетках. Однако, они выделяются не везде. Они концентрируются и выделяются только в месте контакта нейрона с другими клетками.
Контакт нейрона с другими клетками называется синапс.
Синапсы делятся по способу передачи возбуждения на
1. синапсы с электрической передачей возбуждения
2. синапсы с химической передачей возбуждения
Первая группа синапсов немногочисленна до 1-3% от общего числа. Не известны пути влияния на процесс проведения.
Вторая группа – синапсы с химической передачей.
Строение.
1.
Пресинаптическая мембрана - аксон, подходя к объекту иннервации, распадается на терминали, на тончайшие нервные волоконца, которые заканчиваются небольшим утолщением.
Свойства пресинаптической мембраны: а) содержит медиатор - находится в везикулах. У каждого конкретного синапса всегда один и тот же медиатор, т.е. какой медиатор в данном синапсе генетически запрограммирован. Один конкретный синапс -
мономедиаторен. б) область пресинаптической мембраны электровозбудима - она возбуждается и мембрана деполяризуется, если в эту область по аксону к терминали приходит потенциал действия. в) область пресинаптической мембраны - хемоневозбудима. Химическим путем мембрану не возбудить.
У каждого медиатора существует целая система синтеза в нейроне. Медиатор образуется в теле нейрона и диффундирует по аксону (аксональный ток), накапливается в области пресинаптической мембраны, частично медиатор образуется в области пресинаптической мембраны. Второй путь накопления медиатора в синапсе -
аптейк - обратный захват медиатора областью пресинаптической мембраны, это - высокоэнергетический процесс.
В области пресинаптической мембраны медиатор прочно «упаковывается» в везикулы, которые в покое прочно связаны с цитоскелетом клетки.
2. Постсинаптическая мембрана - это мембрана второй клетки, иннервируемой клетки.
Субсинаптическая мембрана - участок постсинаптической мембраны, на котором еѐ свойства выражены максимально.
Свойства субсинаптической мембраны : а) она хемовозбудима. б) она электроневозбудима в) она имеет большое число однотипных хеморецепторов, которые воспринимают действие медиатора и
высокую концетрацию соответствующих ионных каналов (хемочувствительные,рецепторуправляемые
каналы)
3. Синаптическая щель.
Размер 200-500 ангстрем /20-50 мкм (микрон)/, заполнена межклеточной жидкостью, существует периферический барьер, /что это такое никто не знает/ препятствующий выходу медиатора за пределы синапса.
Механизм передачи возбуждения через синапс
Когда возбуждение приходит в область пресинаптической мембраны, она деполяризуется, это:
1. активирует кальциевые потенциалзависимые каналы N-типа, они медленные, быстро инактивируются. В клетку входит небольшое количество кальция
2. Вошедший кальций связывается со специальным белком (кальций - связывающий белок) - синаптосин.
Кальций активирует фосфолирирование нескольких молекул синаптосина, вызывая их конформацию, что приводит к ослаблению связей везикул с цитоскелетом клетки и они (везикулы) перемещаются к внутренней поверхности пресинаптической и прилипает к ней. Это вызывает разрыв везикул (ферментативный протеолиз).
Параллельно прилипание к мембране активирует мембранный белок- синаптопор, который выступает как переносчик медиатора через мембрану либо как белок - переносчик за счет конформации молекулы, либо образуя транспортный канал, либо вызывая экзоцитоз.
Медиатор диффундирует в синаптическую щель, он не выходит за пределы синаптической щели, т.к. сбоку имеются синаптические барьеры, которые препятствуют выходу медиатора за пределы синапса (что такое синаптические барьеры - неизвестно). Молекулы медиатора выделяются
квантами. Количество выделившихся квантов зависит от силы и частоты раздражения, т.е.
передача возбуждения в синапсе за счѐт этого квантируется, она становится дискретной.
Молекулы медиатора идут в к постсинаптической мембране, в область субсинаптической мембраны, которая имеет много однотипных хеморецепторов и образуют комплекс «медиатор – рецептор». Это вызывает активацию соответствующих рецепторуправляемых ионных каналов.
Все медиаторы можно разделить на возбуждающие медиаторы и тормозные медиаторы. Следовательно и
синапсы делятся на возбуждающие и тормозные.
Возбуждающие медиаторы взаимодействуя с рецептором субсинаптической мембраны вызывают активацию натриевых каналов и формируют входящий натриевый ток, который вызывает возникновение частичной деполяризации, т.е рецепторный потенциал, который на уровне синапс обозначают как возбуждающий

постсинаптический потенциал (ВПСП). Тормозной медиатор вызывает усиление входящего калиевого тока или входящего ток хлора, т.е. вызывает локальную гиперполяризацию. Это формирует тормозной
постсинаптический потенциал (ТПСП). Рисунок. Конечный эффект (потенциал действия или тормозной потенциал) формируется за счет суммации ВПСП или ТПСП.
В синапсе известно два вида суммации:
1. Пространственная суммация локальных очагов возбуждения (когда в пространстве суммируются эти локальные очаги и возникает потенциал действия);
2
1   2   3   4   5   6   7   8   9   ...   33


написать администратору сайта