1. Физиология как наука
Скачать 2.32 Mb.
|
. Временная суммация (когда на одни и те же рецепторы последовательно через короткие интервалы времени воздействуют новые порции медиатора и возникает как бы ступенечка - частичная деполяризация, она не окончилась, на нее наслаивается следующая частичная деполяризация и так поляризация достигает КУДа - временная суммация) В дальнейшем комплекс «медиатор-рецептор» диссоциирует. Если этого не происходит, то в возбуждающих синапсах возникает стойкая деполяризация по типу катодической депрессии, При этом данный рецептор перестает воспринимать какую-либо другую информацию. Поэтому в нормальных, естественных условиях медиатор отсоединяется от рецепторов и разрушается ферментами (холинэстераза и т.д.), которые имеются в синапсе. Примерно 20-30% медиатора удаляется таким образом из синаптической щели. Другой способ инактивации медиатора – аптейк - обратный захват пресинаптической мембраной . За счет этого синапс экономно расходует медиатор. Характерные признаки процесса синаптической передачи: 1) Односторонний характер проведения возбуждения в синапсе от пре- к постсинаптической мембране; 2) Квантовый (парциальный) характер освобождения медиатора; 3) Количество квантов медиатора пропорционально частоте и силе приходящего к синапсу (пресинаптической мембране) нервного раздражения; 4) Синаптическая передача не подчиняется закону "всѐ или ничего"; 5) Синапс способен к суммации процессов возбуждения; 6) Проведение возбуждения в синапсе осуществляется с задержкой во времени (синаптическая задержка; еѐ величину для центральных синапсов сейчас можно в клинике уже определять); 7) При многократном прохождении возбуждения через синапс возникает эффект облегчения проведения возбуждения - это связано с тем, что возникающее возбуждение наслаивается на остаточные процессы; 8) Для синапса характерно проведение возбуждения с декрементом (с ослаблением по силе); 9) Трансформация - способность синапса изменять частоту пришедшего раздражения (как правило, синапс резко снижает частоту пришедшего раздражения); 10) Лабильность синапса существенно меньше, чем у нервов; 11) Из всех звеньев рефлекторной дуги синапс - наиболее утомляемый и наиболее чувствительный к ядам и недостатку кислорода элемент цепи. Частное свойство: длительное или очень сильное воздействие на синапс приводит к прекращению синаптической передачи, которое обусловлено истощением медиатора в области пресинаптической мембраны (эффект истощения). Все вышеперечисленные закономерности характерны как для синапсов ЦНС, так и для периферических синапсов. Медиаторы и синаптические рецепторы Медиаторы являются 1.приизводными аминокислот. Наиболее широко в ЦНС распространены медиаторы - амины: ацетилхолин - производное холина, катехоламины: адреналин, норадреналин, дофамин - производные тирозина, серотонин - производное триптофана, гистамин - производное гистидина, Другие производные аминокислот - ГАМК, глицин, глютамин и др. 2. Нейропептиды - эндорфины, энкефалины Рецепторы субсинаптической мембраны Название рецептора определено медиатором, с которым он взаимодействует: холинорецепторы, адренорецепторы, дофаминовые рецепторы, серотониновые /триптаминовые/ рецепторы, гистаминовые рецепторы, ГАМК-рецепторы, эндорфиновые рецепторы и т.д. Медиаторы обладают 2 видами действия 1.ионотропное - изменяют проницаемость каналов для ионов 2.метаботропное- через вторичные посредники запускают и тормозят соответствующие процессы в клетках. 18. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц… Поперечно-полосатая мускулатура составляет основу скелетной мускулатуры. Она обладает двумя важнейшими функциями: 1.Функция движения. 2.Функция поддержания позы (позно-тоническая функция). Поперечно-полосатая мускулатура обладает тремя главными физиологическими свойствами, а именно - возбудимостью, проводимостью и сократимостью. Возбудимость скелетных мышц ниже, чем у нервов, и больше (выше), чем у клеток паренхиматозных органов. Возбудимость скелетных мышц значительно выше, чем у гладкой мускулатуры. Проводимость. Скорость проведения возбуждения в мышцах, ниже, чем в нервах и больше, чем у паренхиматозных тканей. У скелетных мышц проводимость больше, чем у гладких. Сократимость - это способность мышцы уменьшать свою длину или/и увеличивать свое напряжение. Сокращение - это процесс. Процесс сокращения может выражаться в изменении длины (укорочение мышцы), изменении напряжения мышцы, в изменении того и другого показателя. Все мышечные сокращения могут быть: 1. изотонические сокращения - это такие сокращения, когда напряжение (тонус) мышц не изменяется ("изо" - равные), а меняется только длина сокращения (мышечное волокно укорачивается). 2. изометрические - при неизменной длине меняется только напряжение мышц. 3. ауксотонические - смешанные сокращения (это сокращения, в которых присутствует и один и другой компонент). Фазы мышечного сокращения: 1. Латентный период - это время от нанесения раздражения до появления видимого ответа. Время латентного периода тратится на: а) возникновение возбуждения в мышце; б) распространение возбуждения по мышце; в) электромеханическое сопряжение (на процесс взаимосвязи возбуждения с сокращением); г) преодоление вязко- эластических свойств мышц. 2. Фаза сокращения выражается в укорочении мышцы или в изменении напряжения, либо и в том и в другом. 3. Фаза расслабления - возвратное удлинение мышцы, или уменьшение возникшего напряжения или то и другое вместе. 4. Фаза остаточных колебаний С позиций фаз все сокращения делятся на: фазные, нефазные Фазные сокращения - это те сокращения, в которых четко выделяют все три фазы. Нефазные сокращения - это такие сокращения, в которых какая- либо из фаз смазана, отсутствует, растянута на неопределенное время. Фазные сокращения. К ним относятся: одиночное мышечное сокращение, тетанус Одиночное мышечное сокращение: 1. латентный период 2. фаза сокращения 3. фаза расслабления На скелетных мышцах одиночное мышечное сокращение может возникнуть только в экспериментальных условиях (в искусственно созданных условиях). В естественных условиях скелетные мышцы никогда не ответят одиночным мышечным сокращением. Потому что к ним импульсы в естественных условиях приходят группами. Однако одиночное мышечное сокращение лежит в основе всех других видов мышечных сокращений. Тетанус - это длительное суммированное фазное сокращение. 1.всегда суммированные одиночные мышечные сокращения. 2.всегда фазное сокращение (можно выделить все три фазы). Механизм формирования тетануса. В основе формироваия тетанического сокращения лежит процесс суммации. По мнению Гельмгольца, крупнейшего немецкого физиолога, в основе тетануса лежит суммация мышечных сокращений. По мнению Введенского, первично наблюдается суммация возбуждения, а вторично - суммация мышечных сокращений. Если в момент расслабления мышцы, когда она находится в фазе относительной рефрактерности, нанести повторное раздражение, то виден эффект суммации - одно мышечное сокращение наслоится на другое. Если нанести через какой-то интервал времени еще одно раздражение, то снова виден эффект суммации. И каждый раз новая суммация на серию импульсов будет начинаться с нового уровня. Зубчатый тетанус возникает тогда, когда импульс приходит в фазу расслабления. Но бывает, что приходящий импульс застает мышцу на пике сокращения и тогда возникает полная суммация амплитуды. При такой частоте возникает сокращение - гладкий тетанус (возрастание амплитуды). Для одного и того же объекта в одном и том же физиологическом состоянии большая частота будет давать гладкий тетанус, меньшая - зубчатый, совсем редкая частота - одиночное мышечное сокращение. Если уменьшить частоту, то в какой-то момент гладкий тетанус перейдет в зубчатый. Для каждой конкретной мышцы своя частота получения гладкого и зубчатого тетануса. От функционального состояния мышцы (от ее лабильности) зависит, какой будет тетанус - гладкий или зубчатый. Если вы на определенной частоте получили зубчатый тетанус и продолжаете раздражать долго, то получится ли гладкий тетанус? И если продолжать долго раздражать, то перейдет ли гладкий тетанус в зубчатый? Нефазные мышечные сокращения 1. Тонус - это длительное, суммированное, постоянно существующее у мышцы напряжение мышечных волокон. Т.е. тонус у живой мышцы существует всегда. В нем нет начала и нет конца. Поэтому тонус относят к нефазным мышечным сокращениям. Это признак того, что мышечный объект живой. Выраженность его может меняться. В нем нельзя выделить фазы. 2. Контрактура - это длительное, суммированное мышечное сокращение с растянутым периодом расслабления. 19. Сила мышц… Сила мышцы определяется по максимальному грузу, который мышца способна переместить или удержать. Абсолютная сила мышцы - это максимальное напряжение мышечных волокон на единицу поперечного сечения в один квадратный сантиметр. Изолированно скелетные мышцы как таковые не существуют. Они всегда иннервированы. Поэтому в дальнейшем будем использовать понятие - двигательные (моторные) единицы. Двигательные единицы - это мотонейрон с иннервируемыми мышечными волокнами. Двигательные единицы /ДЕ/ могут быть разделены на три основные типа: 1. Медленные неутомляемые мышцы. 2. Быстрые, устойчивые к утомлению. 3.Быстрые легко утомляемые. Сила сокращения мышц зависит от 1.Количества ДЕ, участвующих в сокращении/ чем больше ДЕ тем больше сила и наоборот/ 2.Частоты пульсации мотонейронов, чем больше импульсация, тем большее число ДЕ работает, а значит см. пункт 1. 3.Синхронизации работы ДЕ во времени, чем больше ДЕ синхронизировано, те больше сила сокращения. Эти мышцы выполняют работу: динамическую, статическую. Динамическая работа - это: а) преодолевающая работа (когда сила мышцы, прикладываемой к объекту, больше, чем сила объекта, что позволяет переместить или удержать груз в пространстве), б) уступающая работа (когда сила объекта, приложенная к мышце, больше силы, которую способна развить мышца). Статическая работа - это та работа, которая выполняется при изометрическом режиме (вы уперлись в стену, но и стена на месте и вы на месте). Этапы работы в организме: 1. Врабатываемость - этот этап работы отличается постепенностью, (организм не может сразу включиться в работу на полную мощность). Чтобы период врабатываемости осуществлялся правильно, существуют определенные требования - постепенность нарастания нагрузок (как по силе, так и по интенсивности выполнения), ритмичность. 2. Период устойчивой работоспособности - это период длительный, в течение которого человек (или отдельная мышца) способен показывать максимальную работоспособность. 3. Утомление - снижение работоспособности. Разработано несколько теорий утомления: а) теория засорения - при работе в мышце накапливается избыточное количество метаболитов, многие из них токсичны, б) теория отравления - мышца отравляется собственными метаболитами, в) теория удушения - работающей мышце не хватает кислорода, г) теория истощения - истощаются энергетические запасы в мышце. В принципе теории правильные, но не они вызывают первично утомление. Стали рассматривать нервно-мышечный препарат (нерв, мышцу, синапс) установили: нерв практически неутомим (Введенский), мышца - утомляется, но первично в нервно-мышечном препарате утомление происходит в синапсе - он наиболее легко утомляемый компонент. Утомление в нем формируется гораздо раньше, чем в мышце. Синапс обладает низкой лабильностью, в то время как нерв, по которому приходят импульсы к синапсу, обладает чрезвычайно высокой лабильностью. И синапс как бы все время под нагрузкой, он может провести 10, 40,... импульсов, а к нему приходит 500, 1000... импульсов в секунду, поэтому он быстро утомляется. При дальнейшем рассмотрении выяснилось, что первично утомление развивается не в нервно-мышечной системе. В 20-х годах ХХ века стало понятно, что утомление первично развивается в ЦНС. А как следствие - снижение работоспособности двигательного аппарата. Было установлено, что наиболее легко утомляемой является кора большых полушарий, которая отвечает за психические явления. 20. Функциональная характеристика неисчерченных (гладких) мышц… Возбудимость и проводимость гладких мышц существенно ниже, чем у скелетных. Возбуждение распространяется по гладким мышцам от клетки к клетке за счет нексусов /специальные плотные контакты/. Это позволяет быстро охватить возбуждением все миоциты данной гладкой мышцы. Гладкие мышцы сокращаются медленно, так как расщепление АТФ в них идет в 100- 1000 раз меньше, чем в скелетных мышцах, по этому гладкие мышцы приспособлены к длительному тоническому сокращению без развития утомления, при этом их энергозатраты крайне невелики. Гладкие мышцы подразделяются: 1 Мышцы, обладающие спонтанной активностью /автоматией/, 2 Мышцы, не обладающие спонтанной активностью Спонтанная активность зависит от интенсивности обмена веществ в миоцитах, от степени их растяжения, а также на выраженность СА влияют нервные и гуморальные влияния. Вторая группа сокращается только при вегетативных влияниях/нервных, гуморальных/. Механизм мышечного сокращения гладких мышц отличается от такового у скелетных. Электромеханическое сопряжение в гладких мышцах происходит медленней из-за более медленного переноса кальция, чем в скелетных мышцах. 21. Современная теория мышечного сокращения… Мышцы состоят из мышечных волокон, которые имеют диаметр от 10 до 100 микрон, длину от 5 до 400 микрон. В каждом мышечном волокне содержится до 1000 сократительных элементов (до 1000 миофибрилл - каждое мышечное волокно). Каждая миофибрилла состоит из множества параллельно лежащих тонких и толстых нитей. Толстые нити - это белок миозин, тонкие нити - это белок актин и расположенные на нем вспомогательные белки тропонин и тропомиозин. Это важнейшие сократительные белки. Демонстрация рисунка "Толстые и тонкие нити" К Z-мембране прикреплены нити актина. Между двумя нитями актина лежит одна толстая нить миозина (между двумя Z-мембранами) и она взаимодействует с двумя нитями актина. На нитях миозина есть выросты (ножки), на концах выростов имеются головки миозина (150 молекул миозина). Головки ножек миозина обладают АТФ-азной активностью. Так как именно головки миозина (именно эта АТФ-аза) катализирует АТФ и высвобождающаяся при этом энергия обеспечивает мышечные сокращения (при взаимодействии актина и миозина). На актине имеются активные центры определенной формы, с которым будут взаимодействовать головки миозина. Кроме этих двух важнейших сократительных белков есть еще два белка: -тропомиозин (в состоянии покоя, т.е. когда мышца расслаблена, пространственно препятствует взаимодействию головок миозина с активными центрами актина; он находится радом с ними). Рядом с тропомиозином находится молекула тропонина. Сокращение мышц Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. Ион кальция, когда он в избытке, начинает взаимодействовать с молекулой тропонина. Возникает тропонин- кальциевый комплекс. При этом молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин выталкивает молекулу тропомиозина в желобок между двумя отростками миозина (рисунок). Это создает условия для взаимодействия актина и миозина. При этом создаются все условия для гребкового движения. Это и смещает нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочение мышц. Это - теория скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга. Это энергоемкий процесс. Электромеханическое сопряжение Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения саркоплазматического ретикулума. Эти углубления получили название Т-системы. Возбуждение, которое возникает в мышце, осуществляется обычным путѐм, то есть за счет входящего натриевого тока. Натрий (Na + ), вошедший в клетку в области Т-систем, быстро оказывается в саркоплазматическом ретикулуме. Избыток натрия (Na + ) начинает вытеснять кальций (Ca ++ ) из саркоплазматического ретикулума. Обычно концентрация кальция (Ca ++ ) в цитоплазме равна 10 -8 г/л. При этом (при вытеснении Na + ) в районе сократительных белков (актина и миозина) концентрация кальция (Ca ++ ) становится равной 10 -6 г/л. (т.е. возрастает в 100 раз). Это и запускает процесс сокращения. Т-системы, обеспечивающие быстрое появление натрия (Na + ) в области саркоплазматического ретикулума, вытеснение натрием кальция из саркоплазматического ретикулума - это и есть процессы, обеспечивающие электромеханическое сопряжение (т.е. взаимосвязь между возбуждением и сокращением). 22. Физиологическая регуляция функций… Физиологическая регуляция (регуляция функций) - активное управление функциями организма для обеспечения постоянства внутренней среды организма, требуемого для этого обмена веществ, энергии и информации и обеспечения адекватного приспособления к окружающей среде. Из определения понятно, что регуляция направлена |