Главная страница
Навигация по странице:

  • 10. Роль белков теплового шока и острой фазы.

  • 11. Характеристика антимикробных пептидов и их продуцентов. Антимикробные пептиды

  • 12. Интерфероны, природа. Способы получения и применения. Интерферон

  • Неспецифические факторы защиты организма Механические факторы

  • Физико-химические факторы

  • Иммунобиологические факторы

  • 14. Клеточные факторы врожденного иммунитета (макрофаги, нейтрофилы, естесственные киллеры, дендритные клетки, тучные клетки, базофилы, NK и др.).

  • Нейтрофилы и макрофаги.

  • Ответы на коллок по микробиологии МГМУ. Микра 4 коллок. 1. Иммунитет. Определение, виды и их сравнительная характеристика


    Скачать 0.68 Mb.
    Название1. Иммунитет. Определение, виды и их сравнительная характеристика
    АнкорОтветы на коллок по микробиологии МГМУ
    Дата07.02.2022
    Размер0.68 Mb.
    Формат файлаpdf
    Имя файлаМикра 4 коллок.pdf
    ТипДокументы
    #353946
    страница3 из 13
    1   2   3   4   5   6   7   8   9   ...   13
    Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

    - C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.
    - C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.
    - DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.
    - Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.
    - Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на
    C4c и C4d.
    - Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.
    - Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.
    10. Роль белков теплового шока и острой фазы.
    Все живые клетки отвечают на повышение температуры и некоторые другие стрессовые воздействия синтезом специфического набора белков, называемых белками теплового шока (БТШ, Hsp, heat shock protein, stress protein)
    . У ряда бактерий обнаружена универсальная адаптивная реакция в ответ на различные стрессовые воздействия (высокие и низкие температуры, резкий сдвиг рН и др.), проявляющаяся в интенсивном синтезе небольшой группы сходных белков. Такие белки получили название белков теплового шока, а само явление - синдром теплового шока. Стрессовое воздействие на бактериальную клетку вызывает ингибирование синтеза обычных белков, но индуцирует синтез небольшой группы белков, функция которых предположительно заключается в противодействии стрессовому воздействию путем защиты важнейших клеточных структур, в первую очередь нуклеоидов и мембран. Еще не ясны те регуляторные механизмы, которые запускаются в клетке при воздействиях, вызывающих синдром теплового шока, но очевидно,
    что это универсальный механизм неспецифических адаптивных модификаций.
    Как уже было сказано, к БТШ относят белки, синтезируемые клетками в ответ на тепловой шок, когда подавлена экспрессия основного пула белков, участвующих в нормальном метаболизме. Семейство 70 кДа БТШ (
    БТШ-
    70
    эукариот и
    DnaK
    прокариот) объединяет белки теплового шока, играющие существенную роль как в обеспечении выживания клетки в стрессовых условиях, так и в нормальном метаболизме.
    Белки острой фазы имеют широкий спектр активности, способствующий развитию защиты организма-хозяина. В частности, они могут прямо нейтрализовать флогогенные вещества, помогают минимизировать масштабы локального тканевого повреждения, способствуют очищению очага от продуктов клеточно-тканевого распада и чужеродных веществ, восстанавливают повреждённую ткань, принимают участие в активизации репаративной регенерации повреждённых тканей. Следует отметить, что
    факторы свёртьшания крови, например фибриноген, также играют существенную роль в заживлении раны. Ингибиторы протеиназ нейтрализуют лизосомальные ферменты, выделенные активированными нейтрофилами и макрофагами, контролируя активность провоспалительного ферментного каскада. Увеличение содержания некоторых металлсодержащих ферментов предотвращает потерю железа при инфекции или травме, также минимизируя концентрацию гемового железа, необходимого бактериям, и действуя как ловушка для свободных радикалов кислорода. Основные белки острой фазы у млекопитающих включают сывороточный амилоид А, С- реактивный белок, сывороточный амилоид Р, маннозосвязывающий протеин, активность которых наиболее изучена.
    11. Характеристика антимикробных пептидов и их продуцентов.
    Антимикробные пептиды – короткие молекулы длиной от 12 до 50 аминокислот, способные убивать клетки микроорганизмов.
    Структура и аминокислотная последовательность антимикробных пептидов сильно различается, однако антимикробные пептиды обладают рядом общих свойств. Все они синтезируются в виде больших предшественников с сигнальными последовательностями, которые затем модифицируются либо в результате отщепления части последовательности, либо в результате гликозилирования или галогенирования. Все антимикробные пептиды являются амфипатическими молекулами. У них есть и гидрофобный участок, который реагирует с липидами, и гидрофильный участок, взаимодействующий с водой или отрицательно заряженными ионами. Молекулы антимикробных пептидов как правило положительно заряжены, что помогает им взаимодействовать с отрицательно заряженными мембранами бактерий.
    Существует четыре основных класса антимикробных пептидов:

    молекулы обладающие бета-складчатой структурой которая стабилизируется за счет двух или трех дисульфидных связей

    молекулы обладающие альфа-спиральной структурой

    линейные пептиды

    петлевидные пептиды (петля образуется за счет образования единственной дисульфидной связи)
    12. Интерфероны, природа. Способы получения и
    применения.
    Интерферон относится к важным защитным белкам иммунной системы.
    Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфицированные одним вирусом, становились нечувс- твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладающим защитным противовирусным свойством. Этот белок назвали интерфероном.
    Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: α, β и γ-интерфероны.
    Альфа-интерферон вырабатывается лейкоцитами и он получил название лейкоцитарного; бета-интерферон называют фибробластным, поскольку он
    синтезируется фибробластами — клетками соединительной ткани, а гамма- интерферон — иммунным, так как он вырабатывается активированными Т- лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.
    Интерферон синтезируется в организме постоянно, и его концентрация в крови держится на уровне примерно 2 МЕ/мл (1 международная единица —
    ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД
    50
    вируса). Выработка интерферона резко возрастает при инфицировании виру- сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название
    интерфероногенов.
    Помимо противовирусного действия интерферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размножение) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.
    Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.
    Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне.
    Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.
    Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна.
    Получение интерферона. Получают интерферон двумя способами: а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона; б) генно-инженерным способом — путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, полученный генно-инженерным способом, носит название рекомбинантного. В нашей стране рекомбинантный интерферон получил официальное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.
    Рекомбинантный интерферон нашел широкое применение в медицине как профилактическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.
    13. Роль И. И. Мечникова в формировании учения об
    иммунитете. Неспецифические факторы защиты
    организма.

    Мечников внёс огромный вклад в развитие иммунологии. Он обосновал учение о фагоцитозе и фагоцитах. Доказал, что фагоцитоз - явление универсальное, наблюдается у всех животных, включая простейших, и проявляется по отношению ко всем чужеродным веществам (бактерии, органические частицы и т. д.). Теория фагоцитоза заложила краеугольный камень клеточной теории иммунитета и процесса иммуногенеза в целом с учетом клеточных и гуморальных факторов. За разработку теорий фагоцитоза
    И. И. Мечникову в 1908 г присуждена Нобелевская премия. Л. Пастер на своем портрете, подаренном И. И. Мечникову, написал: «На память знаменитому
    Мечникову — творцу фагоцитарной теории».
    Неспецифические факторы защиты организма
    Механические факторы. Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.
    Физико-химические факторы. Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту
    лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко- стях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.
    Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.
    Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др.
    Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. β -Лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конку- рирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.

    Отдельные гуморальные факторы (некоторые компоненты комплемента, фибронектин и др.) вместе с антителами взаимодействуют с поверхностью микроорганизмов, способствуя их фагоцитозу, играя роль опсонинов.
    Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, поражен- ных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор. В поддержании резистентности организма имеет большое значение и нормальная микрофлора организма.
    14. Клеточные факторы врожденного иммунитета
    (макрофаги, нейтрофилы, естесственные киллеры,
    дендритные клетки, тучные клетки, базофилы, NK и
    др.).
    Нейтрофилы и макрофаги.
    Способностью к эндоцитозу (поглощению частиц с образованием внутриклеточной вакуоли) обладают все эукариотические клетки. Именно таким образом внутрь клеток проникают многие патогенные микроорганизмы.
    Однако в большинстве инфицированных клеток отсутствуют механизмы (либо они слабы), обеспечивающие деструкцию патогена.
    Нейтрофилы и мононуклеарные фагоциты имеют общее миелоидное происхождение из стволовой кроветворной клетки. Однако эти клетки различаются рядом свойств.
    Нейтрофилы - наиболее многочисленная и подвижная популяция фагоцитов, созревание которых начинается и заканчивается в костном мозгу. Около 70% всех нейтрофилов сохраняется в виде резерва в костно-мозговых депо, откуда они под влиянием соответствующих стимулов (провоспалительных цитокинов,
    продуктов микробного происхождения, С5а-компонента комплемента, колониестимулирующих факторов, кортикостероидов, катехоламинов) могут экстренно перемещаться через кровь в очаг тканевой деструкции и участвовать в развитии острого воспалительного ответа. Нейтрофилы - это
    «отряд быстрого реагирования» в системе антимикробной защиты.

    Нейтрофилы - короткоживущие клетки, продолжительность их жизни около
    15 сут. Из костного мозга они выходят в кровоток уже зрелыми клетками, утратившими способность к дифференцированию и пролиферации. Из крови нейтрофилы перемещаются в ткани, в которых они либо гибнут, либо выходят на поверхность слизистых оболочек, где и заканчивают свой жизненный цикл.
    Моноциты, в отличие от нейтрофилов, - незрелые клетки, которые, попадая в кровяное русло и далее в ткани, созревают в тканевые макрофаги
    (плевральные и перитонеальные, купферовские клетки печени, альвеолярные,
    интердигитальные клетки лимфатических узлов, костного мозга, остеокласты, микроглиоциты, мезангиальные клетки почек, сертолиевы клетки яичек, клетки Лангерганса и Гринстейна кожи). Продолжительность жизни мононуклеарных фагоцитов от 40 до 60 сут.
    Макрофаги - не очень быстрые клетки, но они рассеяны во всех тканях, и, в отличие от нейтрофилов, им нет необходимости в столь срочной мобилизации.
    Если продолжить аналогию с нейтрофилами, то макрофаги в системе врожденного иммунитета - это «войска специального назначения».
    Важной особенностью нейтрофилов и макрофагов является наличие в их цитоплазме большого количества лизосом. Нейтрофилы и макрофаги чутко реагируют на любые изменения гомеостаза. Для этой цели они оснащены богатым арсеналом рецепторов, располагающихся на их цитоплазматической мембране.
    Основной функцией нейтрофилов и макрофагов является фагоцитоз.
    Не все микроорганизмы чувствительны к бактерицидным системам фагоцитов. Гонококки, стрептококки, микобактерии и другие выживают после контакта с фагоцитами, такой фагоцитоз называется незавершенным.

    Фагоциты, помимо фагоцитоза (эндоцитоза), могут осуществлять свои цитотоксические реакции путем экзоцитоза - выделения своих гранул наружу
    (дегрануляция) - таким образом фагоциты осуществляют внеклеточный киллинг. Нейтрофилы, в отличие от макрофагов, способны образовывать внеклеточные бактерицидные ловушки - в процессе активации клетка выбрасывает наружу нити ДНК, в которых располагаются гранулы с бактерицидными ферментами. Благодаря липкости ДНК бактерии приклеиваются к ловушкам и под действием фермента погибают.
    Нейтрофилы эффективны при инфекциях, вызванных внеклеточными патогенами (гноеродные кокки, энтеробактерии и др.), индуцирующими развитие острого воспалительного ответа. При таких инфекциях эффективна кооперация нейтрофил-комплемент-антитело. Макрофаги защищают от внутриклеточных патогенов (микобактерии, риккетсии, хламидии и др.), вызывающих развитие хронического гранулематозного воспаления, где главную роль играет кооперация макрофаг-Т- лимфоцит.
    Помимо участия в антимикробной защите, фагоциты участвуют в удалении из организма отмирающих, старых клеток и продуктов их распада, неорганических частиц (уголь, минеральная пыль и др.). Фагоциты (особенно макрофаги) являются антигенпредставляющими, они обладают секреторной функцией, синтезируют и выделяют наружу широкий спектр биологически активных соединений: цитокины (интерлейкины-1, 6, 8, 12, фактор некроза опухоли), простагландины, лейкотриены, интерфероны α и γ. Благодаря этим медиаторам фагоциты активно участвуют в поддержании гомеостаза, в процессах воспаления, в адаптивном иммунном ответе, регенерации.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта