Главная страница

Гистология за 3 дня. 1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный


Скачать 304.84 Kb.
Название1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный
Дата23.12.2022
Размер304.84 Kb.
Формат файлаdocx
Имя файлаГистология за 3 дня.docx
ТипДокументы
#861314
страница30 из 30
1   ...   22   23   24   25   26   27   28   29   30

Внутреннее ухо образовано костным лабиринтом височной кости, который содержит повторяющий его рельеф перепончатый лабиринт. Костный лабиринт – система полукружных каналов и сообщающаяся с ними полость-преддверие. Перепончатый лабиринт – система тонкостенных соединительно-тканных трубок и мешочков, расположенная внутри костного лабиринта. В костных ампулах перепончатые каналы расширяются. В преддверии перепончатый лабиринт образует два сообщающихся между собой мешочка: улюс (эллиптический мешочек), в который открываются перепончатые каналы и саккулюс (сферический мешочек). Перепончатые полукружные каналы и мешочки преддверия заполнены эндолимфой и сообщаются с улиткой, а также с расположенным в полости черепа эндолимфатическим мешком, где эндолимфа резорбируется. Эпителиальная выстилка эндолимфатического мешка содержит цилиндрические клетки с плотной цитоплазмой и ядрами неправильной формы, а также цилиндрические клетки со светлой цитоплазмой, высокими микроворсинками, многочисленными пиноцитозными пузырьками и вакуолями. В просвете мешка присутствуют макрофаги и нейтрофилы.
Строение улитки

. Улитка – это спирально закрученный костный канал, развившийся как вырост преддверия. Улитка образует 2,5 завитка длиной около 35 мм. Базилярная (основная) и вестибулярная мембраны, расположенные внутри канала улитки, делят его полость на три части: барабанную лестницу, вестибулярную лестницу и перепончатый канал улитки, (среднюю лестницу или улитковый ход). Эндолимфа заполняет перепончатый канал улитки, а перилимфа – вестибулярную и барабанную лестницы. Барабанная лестница и вестибулярная лестница сообщаются у вершины улитки с помощью отверстия (геликотремы). В перепончатом канале улитки на базилярной лестнице расположен рецепторный аппарат – спиральный (или кортиев) орган.
Концентрация К+ в эндолимфе в 100 раз больше, чем в перилимфе; концентрация Na+ в эндолимфе в 10 раз меньше, чем в перилимфе.

Перилимфа по химическому составу близка к плазме крови и си жидкости и занимает промежуточное положение между ними по содержанию белка.
Строение кортиевого органа

. Кортиев орган содержит несколько рядов волосковых клеток, связанных с текториальной (покровной мембраной). Различают внутренние и наружные волосковые и поддерживающие клетки.

Волосковые клетки – рецепторные, образуют синаптические контакты с периферическими отростками чувствительных нейронов спирального ганглия. Внутренние волосковые клетки образуют один ряд, имеют расширенное основание, 30 – 60 неподвижных микроворсинок (стереоцилий), проходящих через кутикулу в апикальной части. Стереоцилии расположены полукругом, открытым в сторону наружных структур кортиева органа. Внутренние волосковые клетки – первичные сенсорные клетки, которые возбуждаются в ответ на звуковой раздражитель и передают возбуждение афферентным волокнам слухового нерва. Смещение покровной мембраны вызывает деформацию стереоцилий, в мембране которых открываются механочувствительные ионные каналы и возникает деполяризация. В свою очередь, деполяризация способствует открытию потенциалочувствительных Са

2

+ и К+-каналов, встроенных в базолатеральную мембрану волосковой клетки. Возникающее повышение в цитозоле концентрации Са

2

+ инициирует секрецию (наиболее вероятен глютамат) из синаптических пузырьков с последующим его воздействием на постсинаптическую мембрану в составе афферентных терминалей слухового нерва.
Наружные волосковые клетки расположены в 3 – 5 рядов, имеют цилиндрическую форму и стереоцилии. Миозин распределяется вдоль стереоцилии волокнистой клетки.

Поддерживающие клетки. Среди поддерживающих клеток различают внутренние фаланговые клетки, внутренние клетки-столбы, наружные фаланговые клетки Дейтерса, наружные клетки-столбы, клетки Гензена, клетки Беттхера. Фаланговые клетки вступают в контакт с волосковыми на базальной мембране. Отростки наружных фаланговых клеток проходят параллельно наружным волосковым клеткам, не соприкасаясь с ними на значительном протяжении, и на уровне апикальной части волосковых клеток вступают с ними в контакт. Поддерживающие клетки связаны щелевыми контактами, образованными мембранным белком щелевого контакта коннексином-26. Щелевидные контакты участвуют в восстановлении уровня К+ в эндолимфе в ходе следовых реакций после возбуждения волосковых клеток.
Путь передачи слухового раздражения
Цепочка передачи звукового давления выглядит следующим образом: барабанная перепонка далее слуховые косточки – молоточек, наковаленка, стремечко, далее – мембрана овального окна, перилимфа базилярная и текториальная мембраны и мембрана круглого окна.

При смещении стремечка частицы перелимфы перемещаются по вестибулярной лестнице и затем через геликотрему по барабанной лестнице – к круглому окну.

Жидкость, сдвинутая смещением мембраны овального окна, создает избыточное давление в вестибулярном канале. Под действием этого давления базальный участок основной мембраны смешается в сторону барабанной лестницы. Колебательная реакция в виде волны распространяется от базальной части основной мембраны к геликотреме. Смещение текториальной мембраны относительно волосковых клеток при действии звука вызывает их возбуждение. Смещение мембраны относительно сенсорного эпителия отклоняет стереоцилии волосковых клеток, что открывает механочувствительные каналы в клеточной мембране и приводит к деполяризации клеток. Возникающая электрическая реакция, названная микрофонным эффектом, по своей форме повторяет форму звукового сигнала.
Строение и функционирование органа равновесия
В ампулярном расширении полукружного канала находятся кристы (или гребешки). Чувствительные области в мешочках называются пятнами.

В состав эпителия пятен и крист входят чувствительные волосковые и поддерживающие клетки. В эпителии пятен киноцилии распределяются особым образом. Здесь волосковые клетки образуют группы из нескольких сот единиц. Внутри каждой группы киноцилии ориентированы одинаково, однако ориентация самих групп различна. Эпителий пятен покрыт отолитовой мембраной. Отолиты – кристаллы карбоната кальция. Эпителий крист окружен желатинообразным прозрачным куполом.

Волосковые клетки присутствуют в каждой ампуле полукружных каналов и в пятнах мешочков преддверия. Различают два типа волосковых клеток. Клетки типа I обычно расположены в центре гребешков, а клетки типа II – по периферии. Клетки обоих типов в апикальной части содержат 40 – 110 неподвижных волосков (стереоцилий) и одну ресничку (киноцилию), расположенную на периферии пучка стереоцилий. Самые длинные стереоцилии находятся вблизи киноцилии, а длина остальных уменьшается по мере удаления от киноцилии.

Волосковые клетки чувствительны к направлению действия стимула (дирекционная чувствительность). При направлении раздражающего воздействия от стереоцилии к киноцилии волосковая клетка возбуждается. При противоположном направлении стимула происходит угнетение ответа. Клетки типа I имеют форму амфоры с закругленным дном и размещены в бокалообразной полости афферентного нервного окончания. Эфферентные волокна образуют синаптические окончания на афферентных волокнах, связанных с клетками I типа. Клетки типа II имеют вид цилиндров с округлым основанием. Характерная особенность этих клеток заключается в их иннервации: нервные окончания здесь могут быть как афферентными (большинство), так и эфферентными.

При сверхпороговом звуковом раздражении (акустическая травме) и при действии некоторых ототоксических препаратов (антибиотиков стрептомицина, гентамицина) волосковые клетки погибают. Возможность их регенерации из клеток-предшественниц нейросенсорного эпителия имеет важное практическое значение, считается установленным для птиц и интенсивно изучается на млекопитающих.

Вестибулярный нерв образован отростками биполярных нейронов в составе вестибулярного ганглия. Периферические отростки этих нейронов подходят к волосковым клеткам каждого полукружного канала, утрикулюса и саккулюса, а центральные направляются в вестибулярные ядра продолговатого мозга.


Тема 30. ОРГАНЫ КРОВЕТВОРЕНИЯ И ИММУНОЛОГИЧЕСКОЙ ЗАЩИТЫ
К органам кроветворения и иммунологической защиты относят красный костный мозг, вилочковую железу (тимус), лимфатические узлы, селезенку, а также лимфатические фолликулы пищеварительного тракта (миндалины, лимфатические фолликулы кишечника) и других органов. Они образуют единую с кровью систему.

Их делят на центральные и периферические органы кроветворения и иммунологической защиты.

К центральным органам относятся красный костный мозг, вилочковая железа и пока неизвестный у млекопитающих аналог сумки Фабрициуса. В красном костном мозге из стволовых клеток образуются эритроциты, гранулоциты, кровяные пластинки (тромбоциты), В-лимфоциты и предшественники Т-лимфоцитов. В вилочковой железе предшественники Т-лимфоцитов превращаются в Т-лимфоциты. В центральных органах происходит антигеннезависимое размножение лимфоцитов.

В периферических кроветворных органах (лимфатических узлах, гемолимфатических узлах, селезенке) происходит размножение приносимых сюда из центральных органов Т– и В-лимфоцитов и дифференцировка их под влиянием антигенов в эффекторные клетки, осуществляющие иммунологическую защиту. Кроме того, здесь происходит выбраковка отмирающих клеток крови.

Органы кроветворения функционируют содружественно и обеспечивают поддержание морфологического состава крови и иммунологического гомеостаза в организме.

Несмотря на различия в специализации органов гемопоэза, все они имеют сходные структурно-функциональные признаки. В основе их лежит ретикулярная соединительная, а иногда эпителиальная ткань (в вилочковой железе), которая вместе с фибробластами и макрофагами образует строму органов и выполняет роль специфического микроокружения для развивающихся клеток. В этих органах происходит размножение кроветворных клеток, временное депонирование крови или лимфы. Кроветворные органы благодаря наличию в них специальных фагоцитирующих и иммунокомпетентных клеток осуществляют также защитную функцию и способны очищать кровь или лимфу от инородных частиц, бактерий и остатков погибших клеток.

Костный мозг
Костный мозг – центральный кроветворный орган, где находится самоподдерживающаяся популяция стволовых клеток, где образуются клетки как миелоидного, так и лимфоидного ряда.
Строение

. Во взрослом организме человека различают красный и желтый костный мозг.
Красный костный мозг является кроветворной частью костного мозга. Он заполняет губчатое вещество плоских костей и эпифизов трубчатых костей и во взрослом организме составляет в среднем около 4 – 5% общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле.

Ретикулярная ткань структурной основы костного мозга обладает низкой пролиферативной активностью. Строма пронизана множеством кровеносных сосудов микроциркуляторного русла, между которыми располагаются гемопоэтические клетки: стволовые, полустволовые (морфологически неидентифицируемые), различные стадии созревания эритробластов и миелоцитов, мегакариобласты, мегакариоциты, лимфобласты, В-лимфоциты, макрофаги и зрелые форменные элементы крови. Лимфоциты и макрофаги принимают участие в защитных реакциях организма. Наиболее интенсивно кроветворение происходит вблизи эндоста, где концентрация стволовых кроветворных клеток примерно в 3 раза больше, чем в центре костномозговой полости.

Гемопоэтические клетки располагаются островками. Эритробласты в процессе созревания окружают макрофаг, содержащий железо фагоцитированных эритроцитов, и получают от него молекулу этого металла для построения геминовой части гемоглобина. Макрофаги служат своего рода кормильцами для эритробластов, которые за их счет постепенно обогащаются железом. Макрофаги фагоцитируют обломки клеток и неполноценные клетки. Незрелые эритроидные клетки окружены гликопротеидами. По мере созревания клеток количество этих биополимеров уменьшается.

Гранулоцитопоэтические клетки также располагаются в виде островков, но не связаны с макрофагами. Незрелые клетки гранулоцитарных рядов окружены протеингликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.

Мегакариобласты и мегакариоциты располагаются в тесном контакте с синусами так, что периферическая часть их цитоплазмы проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде кровяных пластинок происходит непосредственно в кровяное русло.

Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов (нулевых лимфоцитов, В-лимфоцитов) и моноцитов, которые обычно плотными кольцами окружают кровеносный сосуд. Эксперименты с пересадкой костномозговых лимфоцитов в селезенку облученных смертельной дозой животных показали наличие среди них стволовых, полустволовых и унипотентных кроветворных клеток.

При дифференцировке В-лимфоцитов осуществляется депрессия структурных и регуляторных генов иммуноглобулинов, синтез иммуноглобулинов внутри клетки и появление их на мембране В-лимфоцитов в виде антигенраспознающих рецепторов.

В обычных физиологических условиях через стенку синусов костного мозга проникают лишь созревшие форменные элементы крови. Миелоциты и нормобласты попадают в кровь только при патологических состояниях организма. Причины такой избирательной проницаемости стенки синуса остаются недостаточно ясными, но факт проникновения незрелых клеток в кровяное русло всегда служит верным признаком расстройства костномозгового кроветворения.

Вышедшие в кровоток клетки выполняют свои функции либо в сосудах микроциркуляторного русла (эритроциты, кровяные пластинки), либо при попадании в соединительную ткань (лимфоциты, лейкоциты) и в периферические лимфоидные органы (лимфоциты). В частности, предшественники лимфоцитов (нулевые лимфоциты) и зрелые В-лимфоциты мигрируют в тимуснезависимые зоны селезенки, где они клонируются на клетки иммунологической памяти и клетки, непосредственно дифференцирующиеся в антителопродуценты (плазматические клетки) уже при первичном иммунном ответе.

Желтый костный мозг у взрослых находится в диафизах трубчатых костей. Он представляет собой перерожденную ретикулярную ткань, клетки которой содержат жировые включения. Благодаря наличию в жировых клетках пигментов типа липохромов костный мозг в диафизах имеет желтый цвет, чем и определяется его название. В обычных условиях желтый костный мозг не осуществляет кроветворной функции, но в случае больших кровопотерь или при токсических отравлениях организма в нем появляются очаги миелопоэза за счет дифференцировки приносимых сюда с кровью стволовых и полустволовых клеток.

Резкой границы между желтым и красным костным мозгом не существует. Небольшое количество жировых клеток постоянно встречается и в красном костном мозге. Соотношение желтого и красного костного мозга может меняться в зависимости от возраста, условий питания, нервных, эндокринных и других факторов.
Васкуляризация

. Костный мозг снабжается кровью посредством сосудов, проникающих через надкостницу в специальные отверстия в компактном веществе кости. Войдя в костный мозг, артерии разветвляются на восходящую и нисходящую ветви, от которых радиально отходят артериолы, которые сначала переходят в узкие капилляры (2 – 4 мкм), а затем в области эндоста продолжаются в широкие тонкостенные со щелевидными порами синусоидные капилляры (или синусы) диаметром 10 – 14 мкм. Из синусов кровь собирается в центральную венулу.


Вилочковая (или зобная) железа (тимус)
Вилочковая железа – центральный орган лимфоцитопоэза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в ней происходит антигеннезависимая дифференцировка их в Т-лимфоциты, разновидности которых осуществляют реакции клеточного иммунитета и регулируют реакции гуморального иммунитета.

Вилочковая железа – непарный, не до конца разделенный на дольки орган, в основе которого лежит отростчатая эпителиальная ткань, инвагинировавшая в процессе развития так, что базальный слой эпителия с базальной мембраной обращен наружу и граничит с окружающей соединительной тканью, которая образует соединительно-тканную капсулу. От нее внутрь отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество.

Корковое вещество долек инфильтрировано Т-лимфоцитами, которые густо заполняют просветы сетевидного эпителиального остова, придавая этой части дольки характерный вид и темную окраску на препаратах. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки – лимфобласты, которые под влиянием гемопоэтических факторов (тимозина), выделяемых эпителиальными клетками стромы, пролиферируют. Эти предшественники Т-лимфоцитов мигрируют сюда из красного костного мозга. Новые генерации лимфоцитов появляются в вилочковой железе каждые 6 – 9 ч. Т-лимфоциты коркового вещества мигрируют в кровоток, не входя в мозговое вещество. Эти лимфоциты отличаются по составу маркеров и рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфоцитопоэза – лимфатические узлы и селезенку.

Клетки коркового вещества определенным образом отграничены от крови гематотканевым барьером, предохраняющим дифференцирующиеся лимфоциты коркового вещества от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофагами и межклеточным веществом, а также эпителиальные клетки с их базальной мембраной.

Мозговое вещество дольки на препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут входить и выходить в кровоток через посткапиллярные венулы и лимфатические сосуды. Особенностью ультрамикроскопического строения отростчатых эпителиальных клеток является наличие в цитоплазме гроздевидных вакуолей и внутриклеточных канальцев, поверхность которых образует микровыросты. Базальная мембрана редуцируется.

Васкуляризация. Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. От них почти под прямым углом отходят кровеносные капилляры, образующие густую сеть, особенно в корковой зоне. Капилляры коркового вещества окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство (барьер). В перикапиллярном пространстве, заполненном жидким содержимым, встречаются лимфоциты и макрофаги. Большая часть корковых капилляров переходит непосредственно в подкапсулярные венулы.
1   ...   22   23   24   25   26   27   28   29   30


написать администратору сайта