Защита 1-1. 1. Классификация электроизмерительных приборов. Магнитоэлектрическая и электромагнитная система. Их отличия
Скачать 1.79 Mb.
|
1. Классификация электроизмерительных приборов. Магнитоэлектрическая и электромагнитная система. Их отличия.Электроизмери́тельные прибо́ры — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки. Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов: амперметры — для измерения силы электрического тока; вольтметры и потенциометры — для измерения электрического напряжения; омметры — для измерения электрического сопротивления; мультиметры (иначе тестеры, авометры) — комбинированные приборы частотомеры — для измерения частоты колебаний электрического тока; магазины сопротивлений — для воспроизведения заданных сопротивлений; ваттметры и варметры — для измерения мощности электрического тока; электрические счётчики — для измерения потреблённой электроэнергии и множество других видов. Магнитоэлектрические системы основаны на использовании сил взаимодействия магнитного поля постоянного магнита и тока в подвижной катушке или рамке. Системы могут выполняться с вращательным и с поступательным движением рамки. Магнитоэлектрические системы отличаются большей экономичностью, так как они имеют лишь тепловые потери в катушках, тогда как в электромагнитных системах часть энергии тратится на периодическое намагничивание магнитомягкой детали.
2. Класс точности. Цена деления. Чувствительность. Погрешности приборов и измерений. Определения и формулы расчета Класс точности — обобщённая характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы. Длина шкалы — длина линии, проходящей через центры всех самых коротких отметок шкалы и ограниченной начальной и конечной отметками. 3. Расчет шунта и добавочного сопротивления. Расчет добавочного сопротивления 4. Требования к амперметру и вольтметру Включение амперметра в цепь — всегда последовательно с нагрузкой. Если подключить амперметр параллельно нагрузке, параллельно источнику питания, то амперметр просто сгорит или сгорит источник, поскольку весь ток потечет через мизерное сопротивление измерительного прибора. При подключении надо соблюдать полярность: "+" амперметра подключается к "+" источника тока, а "минус" амперметра - к "минусу" источника тока. Для измерения напряжения существуют специальный измерительный прибор — вольтметр. 5. Проводники в электрическом поле. внутри проводника и у его поверхности В проводниках — в металлах и электролитах, есть носители заряда. В электролитах это ионы, в металлах — электроны. Эти электрически заряженные частицы способны под действием внешнего электростатического поля перемещаться по всему объему проводника. Электроны проводимости в металлах, возникающие при конденсации паров металла, благодаря обобществлению валентных электронов, являются в металлах носителями заряда. Но на поверхности проводника напряженность E будет направлена по нормали к этой поверхности, ибо в противном случае, составляющая напряженности, направленная по касательной к поверхности проводника привела бы к перемещению зарядов по проводнику, что противоречило бы реальному, статическому из распределению. Снаружи, вне проводника, электрическое поле есть, значит есть и вектор E, перпендикулярный поверхности. На том принципе, что внутрь проводника внешнее электрическое поле не проникает, основано электростатическое экранирование. Напряженность внешнего электрического поля Е компенсируется нормальным (перпендикулярным) электрическим полем на поверхности проводника En, а напряженность по касательной Eт равна нулю. Получается, что проводник в этой ситуации полностью эквипотенциален. 6. Связь между напряженностью поля у поверхности проводника и поверхностью плотностью зарядов Напряженность электрического поля у поверхности проводника связана с поверхностной плотностью зарядов соотношением E=σε0 . внутри проводника напряженность электрического поля равна нулю, а у поверхности вектор напряженности перпендикулярен поверхности проводника. Кроме того, электрические заряды локализованы на поверхности проводника. Эти факты позволяют с помощью теоремы Гаусса установить связь между напряженностью поля и поверхностной плотностью заряда. 7. Электрическое сопротивление. Зависимость сопротивления металлов от температуры. 8. Закон Ома. Дифференциальная форма закона Ома Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь. 9. Понятие о сверхпроводимости. Работа и мошность тока. Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающимся в полном вытеснении магнитного поля из объёма сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A. Формула работы электрического тока имеет вид: A = I*U*t Произведение I*U есть не что иное, как мощность электрического тока. Тогда формула работы электрического тока примет вид: A = P*t Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях. Поэтому, если мы хотим узнать, какую работу произвел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд. |