Ответы на экзаменационные вопросы (стомат факул). 1 Клетка, как структурнофункциональная единица ткани. Определение. Общий план строения эукариотических клеток. Взаимодействие структур клетки в процессе ее метаболизма (на примере синтеза белков и небелковых веществ).
Скачать 307.23 Kb.
|
Возрстные изменения. Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований, рост костного скелета. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений. № 5 Понятие об иммунной системе и ее тканевых компонентах. Классификация и характеристика иммуноцитов и их взаимодействие в реакциях гуморального и клеточного иммунитета. Костный мозг и фабрициева сумка как центральные органы иммуногенеза, их роль в образовании В-лимфоцитов. Разновидности В-лимфоцитов и плазмоцитов, их антигеннезависимая и антигензависимая дифференцировка, характеристика рецепторов. Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток – иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (интигенов) и осуществляющих специфическую функцию. Иммунная система представлена красным костным мозгом — источником стволовых клеток для иммуноцитов, центральным органом лимфоцитопоэза (тимус), периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах), лимфоцитами крови и лимфы, а также популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани. Все органы иммунной системы функционируют как единое целое благодаря нейрогуморальным механизмам регуляции, а также постоянно совершающимся процессам миграции и рециркуляции клеток по кровеносной и лимфатической системам. Клетки иммунной системы (иммуноциты) могут быть разделены на три группы: 1. Иммунокомпетентные клетки, способные к специфическому ответу на действие антигенов. Этими свойствами обладают исключительно лимфоциты, каждый из которых изначально обладает рецепторами для какого-либо антигена. 2. Вспомогательные (антиген-представляющие) клетки, способные отличать собственные антигены от чужеродных и представлять их иммунокомпетентным клеткам, без чего невозможен иммунный ответ на большинство чужеродных антигенов 3. Клетки антиген-неспецифической защиты, отличающие компоненты собственного организма от чужеродных частиц, в первую очередь от микроорганизмов, и уничтожающих последние путем фагоцитоза или цитотоксического воздействия. Лимфоциты. Лимфоциты, как и другие клетки иммунной системы, являются производными полипотентной стволовой клетки костного мозга. В результате пролиферации и дифференцировки стволовых клеток формируются две основные группы лимфоцитов, именуемые В- и Т-лимфоцитами, которые морфологически не отличимы друг от друга. В ходе дифференцировки лимфоциты приобретают рецепторный аппарат, определяющий их способность взаимодействовать с другими клетками организма и отвечать на антигенные воздействия, формировать клоны клеток — потомков, реализующих конечный эффект иммунологической реакции (образование антител или цитолитических лимфоцитов). Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ — пищеварительных ферментов, компонентов системы комплемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и tip., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специфического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характеризующихся рядом отклонений от нормы (опухолевые клетки). В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет. При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы), которые непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (гиперчувствительность замедленного типа) и др. При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела. Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте. Гуморальный иммунный ответ обеспечивают макрофаги (ан-тигенпрезентирующие клетки), Тх и В-лимфоциты. Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки. Кооперация клеток. Т-лимфоциты реализуют клеточные формы иммунного ответа, В-лимфоциты обуславливают гуморальный ответ. Однако обе формы иммунологических реакций не могут состояться баз участия вспомогательных клеток, которые в дополнение к сигналу, получаемому антигенреактивными клетками от антигена, формируют второй, неспецифический, сигнал, без которого Т-лимфоцит не воспринимает антигенное воздействие, а В-лимфоцит не способен к пролиферации. Межклеточная кооперация входит в число механизмов специфической регуляции иммунного ответа в организме. В ней принимают участие специфические взаимодействия между конкретными антигенами и соответствующими им структурами антител и клеточных рецепторов. Костный мозг — центральный кроветворный орган, в котором находится самоподдерживающаяся популяция стволовых кроветворных клеток и образуются клетки как миелоидного, так и лимфоидного ряда. Сумка Фабрициуса — центральный орган иммунопоэза у птиц, где происходит развитие В-лимфоцитов, находится в области клоаки. Для ее микроскопического строения характерно наличие многочисленных складок, покрытых эпителием, в которых расположены лимфоидные узелки, ограниченные мембраной. В узелках содержатся эпителиоциты и лимфоциты на различных стадиях дифференцировки. B-лимфоциты и плазмоциты. B-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов — селезенки, лимфатических узлов, лимфоид-ные фолликулы многих внутренних органов. Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или mlg) для антигенов. При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость. Дифференцировка. Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов. Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе). Антигензависимая пролиферация и дифференцировка Т- и В-лимфо-цитов происходят при встрече с антигенами в периферических лимфоид-ных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене). № 6 Участие клеток крови и соединительной ткани в защитных реакциях (гранулоциты, моноциты - макрофаги, тучные клетки). Гранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и сегментированные ядра. Нейтрофильные гранулоциты— самая многочисленная группа лейкоцитов, составляющая 2,0—5,5 • 109 л крови. Их диаметр в мазке крови 10—12 мкм, а в капле свежей крови 7—9 мкм. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости — юные, палочкоядерные и сегментоядерные. В цитоплазме нейтрофилов видна зернистость. В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки. Во внутренней части цитоплазмы расположены органеллы (аппарат Гольджи, гранулярный эндоплазматический ретикулум, единичные митохондрии). В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной. Основная функция нейтрофилов — фагоцитоз микроорганизмов, поэтому их называют микрофагами. Продолжительность жизни нейтрофилов составляет 5—9 сут. Эозинофильные грамулоциты. Количество эозинофилов в крови составляет 0,02— 0,3 • 109 л. Их диаметр в мазке крови 12—14 мкм, в капле свежей крови — 9—10 мкм. В цитоплазме расположены органеллы — аппарат Гольджи (около ядра), немногочисленные митохондрии, актиновые филаменты в кортексе цитоплазмы под плазмолеммой и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные). Функция. Эозинофилы способствуют снижению гистамина в тканях различными путями. Специфическая функция – антипаразитарная. Базофильные гранулоциты. Количество базофилов в крови составляет 0—0,06 • 109/л. Их диаметр в мазке крови равен 11 — 12 мкм, в капле свежей крови — около 9 мкм. В цитоплазме выявляются все виды органелл — эндоплазматическая сеть, рибосомы, аппарат Гольджи, митохондрии, актиновые фила-менты. Функции. Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор, образуют биологически активные метаболиты арахидоновой кислоты — лейкотриены, простагландины. Продолжительность жизни. Базофилы находятся в крови около 1—2 сут. Моноциты. В капле свежей крови этих клеток 9—12 мкм, в мазке крови 18—20 мкм. В ядре моноцита содержится одно или несколько маленьких ядрышек. Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов, в ней содержится различное количество очень мелких азурофильных зерен (лизосом). Характерны наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пиноцитозных везикул. Имеются короткие канальцы гранулярной эндоплазматической сети, а также небольшие по размеру митохондрии. Моноциты относятся к макрофагической системе организма, или к так называемой мононуклеарной фагоцитарной системе (МФС). Клетки этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на мембране рецепторов для иммуноглобулинов и комплемента. Моноциты, выселяющиеся в ткани, превращаются в макрофаги, при этом у них появляются большое количество лизосом, фагосом, фаголизосом. Тучные клетки (тканевые базофилы, лаброциты). Этими терминами называют клетки, в цитоплазме которых находится специфическая зернистость, напоминающая гранулы базофильных лейкоцитов. Тучные клетки являются регуляторами местного гомеостаза соединительной ткани. Они принимают участие в понижении свертывания крови, повышении проницаемости гематотканевого барьера, в процессе воспаления, иммуногенеза и др. У человека тучные клетки обнаруживаются всюду, где имеются прослойки рыхлой волокнистой соединительной ткани. Особенно много тканевых базофилов в стенке органов желудочно-кишечного тракта, матке, молочной железе, тимусе (вилочковая железа), миндалинах. Тучные клетки способны к секреции и выбросу своих гранул. Деграну-ляция тучных клеток может происходить в ответ на любое изменение физиологических условий и действие патогенов. Выброс гранул, содержащих биологически активные вещества, изменяет местный или общий гомеостаз. Но выход биогенных аминов из тучной клетки может происходить и путем секреции растворимых компонентов через поры клеточных мембран с запу-стеванием гранул (секреция гистамина). Гистамин немедленно вызывает расширение кровеносных капилляров и повышает их проницаемость, что проявляется в локальных отеках. Он обладает также выраженным гипотензивным действием и является важным медиатором воспаления. № 7 Гисто-функциональная характеристика и особенности организации серого и белого вещества в спинном мозге, стволе мозжечка и больших полушариях головного мозга. Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество. Серое веществоспинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала. Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется немногочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами. Белое веществоспинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга. Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой. В коре мозжечка различают три слоя: наружный — молекулярный, средний — ганглионарный слой, или слой грушевидных нейронов, и внутренний — зернистый. Большие полушария. Полушарие большого мозга снаружи покрыто тонкой пластинкой серого вещества - корой большого мозга. Кора большого мозга (плащ) представлена серым веществом, расположенным по периферии полушарий большого мозга. Помимо коры, образующей поверхностные слои конечного мозга, серое вещество в каждом из полушарий большого мозга залегает в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества в связи с их положением получили наименование базальных (подкорковых, центральных) ядер (узлов). К базальным ядрам полушарий относят полосатое тело, состоящее из хвостатого и чечевицеобразного ядер; ограду и миндалевидное тело. № 8 Головной мозг. Общая морфо-функциональная характеристика больших полушарий. Эмбриогенез. Нейронная организация коры больших полушарий. Понятие о колонках и модулях. Миелоархитектоника. Возрастные изменения коры. В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга. Строение. Кора большого мозга представлена слоем серого вещества. Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга.. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями. Развитие коры больших полушарий (неокортекса) человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку. Вначале в корковую пластинку поступают нейроциты будущих I и VI слоев, т.е. наиболее поверхностного и глубокого слоев коры. Затем в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохрон-но). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки. |