Главная страница
Навигация по странице:

  • 13. Общая характеристика нервной ткани (строение, развитие, функции)

  • 16. Нервные волокна и окончания

  • 17. Рефлекторная дуга, и ее составные компоненты

  • 18. Орган зрения. Оболочки глазного яблока. Строение роговицы и сетчатки

  • 19. Орган слуха. Строение кортиева органа

  • 20. Кровь Кровь

  • 21. Эпителий Эпителий

  • Морфологическая классификация Однослойный эпителий

  • Онтофилогенетическая классификация

  • Эпидермальный тип

  • Эпендимоглиальный тип

  • Однослойный плоский эпителий

  • Однослойный кубический эпителий

  • Однослойный цилиндрический эпителий

  • Однослойный многорядный реснитчатый эпителий

  • Многослойный плоский неороговевающий эпителий

  • Многослойный плоский ороговевающий эпителий

  • Многослойный кубический и цилиндрический эпителии

  • Гисто. 1. Общая характеристика рыхлой соединительной ткани


    Скачать 0.58 Mb.
    Название1. Общая характеристика рыхлой соединительной ткани
    АнкорГисто
    Дата06.12.2020
    Размер0.58 Mb.
    Формат файлаdocx
    Имя файлаGistologia_RK-2_teoria.docx
    ТипДокументы
    #157377
    страница3 из 3
    1   2   3

    12. Скелетная поперечнополосатая мышечная ткань

    Гладкая мышечная ткань, развивается из мезенхимы. К специальным мышечным тканям относятся гладкомышечные клетки радужной оболочки, — миоэпителиальные клетки слюнных, слезных, потовых и молочных желез. Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная — из миотомов сомитов, сердечная — из висцеральных листков спланхиотомов. Структурно-функциональной единицей поперечнополосатой скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку). Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы. Миосимпласт является основным структурным компонентом мышечного волокна (как по объему, так и по выполняемым функциям). Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток — миобластов. Отличительной особенностью миосимпласта является также наличие в нем: 1) миофибрилл; 2) саркоплазматической сети; 3) канальцев Т-системы. Миофибриллы — сократительные элементы миосимпласта, локализуются в центральной части саркоплазмы миосимпласта. По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Саркоплазматическая сеть — это видоизмененная гладкая эндоплазматическая сеть; состоящая из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. Мышца состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. В мышечной ткани различают два вида регенерации — физиологическую и репаративную. Физиологическая регенерация проявляется форме гипертрофии мышечных волокон. Репаративная регенерация развивается после повреждения мышечных волокон. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл образуются мышечные точки, которые растут навстречу друг другу, затем сливаются, приводя к закрытию дефекта. Скелетные мышцы получают двигательную, чувствительную и трофическую иннервацию.
    13. Общая характеристика нервной ткани (строение, развитие, функции)

    Структурно-функциональные особенности нервной

    ткани: 1) состоит из двух основных типов клеток: нейроцитов и нейроглии; 2) межклеточное вещество отсутствует; 3) нервная ткань не подразделяется на морфологические подгруппы; 4) основной источник происхождения: нейроэктодерма. Структурные компоненты нервной ткани: 1) нервные клетки (нейроциты или нейроны); 2) глиальные клетки — глиоциты. Нейроциты — это структурные компоненты нервной ткани. Клетки нейроглии способствуют выполнению перечисленных функций. Источники и этапы развития нервной ткани. Основной источник — нейроэктодерма. Некоторые клетки глиальные клетки развиваются из микроглии и из мезенхимы. Этапы развития: 1) нервная пластинка; 2) нервный желобок; 3) нервная трубка, ганглиозная пластинка, нейральные плакоды. Из нервной трубки развивается нервная ткань, в основном — из органов центральной нервной системы (спинного и головного мозга). Из ганглиозной пластинки развивается нервная ткань некоторых органов периферической нервной системы (вегетативных и спинальных ганглиев). Из нейральных плакод развиваются ганглии черепных нервов. В процессе развития нервной ткани вначале образуются два типа клеток: 1) нейробласты; 2) глиобласты. Характеристика нейроцитов По морфологии все нейроциты являются отростчатыми клетками. в каждой нервной клетке выделяют две части: 1) клеточное тело (перикарион); 2) отростки. Отростки нейроцитов подразделяются на две разновидности: 1) аксон , который проводит импульсы от клеточного тела (на другие нервные клетки или на рабочие органы); 2) дендрит, который проводит импульсы к клеточному телу. Классификация нейроцитов Нервные клетки классифицируются: 1) по морфологии; 2) по функции. По морфологии по количеству отростков подразделяются на: 1) униполярные (псевдоуниполярые) с одним отростком; 2) биполярные (с двумя отростками); 3) мультиполярные (более двух отростков). По функции подразделяются на: 1) афферентные (чувствительные); 2) эфферентные (двигательные, секреторные); 3) ассоциативные (вставочные); 4) секреторные (нейроэндокринные). Клетки нейроглии являются вспомогательными клетками и нервной ткани и выполняют следующие функции: 1) опорную; 2) трофическую; 3) разграничительную; 4) секреторную; 5) защитную и др. Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков. На основании размеров они подразделяются, на макроглию и микроглию. Клетки макроглии имеют эктодермальный источник происхождения (из нейроэктодермы), клетки микроглии развиваются из мезенхимы. Эпендимоциты выполняют следующие функции в нервной системе: 1) разграничительную (образуя выстилку полостей мозга); 2) секреторную; 3) механическую (обеспечивает движение церебральной жидкости); 4) опорную (для нейроцитов); 5) барьерную (участвуя в образовании поверхностной глиальной пограничной мембраны). Астроциты — клетки с многочисленными отростками, напоминающими в совокупности форму звезды, откуда и происходит их название. По особенностям строения их отростков астроциты подразделяются на: 1) протоплазматические (короткие, но широкие и сильно ветвящиеся отростки); 2) волокнистые (тонкие, длинные, слабо ветвящиеся отростки). Волокнистые астроциты осуществляют опорную функцию для нейроцитов и их отростков, так как их длинные тонкие отростки образуют глиальные волокна. Кроме того, терминальные расширения отростков волокнистых астроцитов образуют периваскулярные (вокругсосудистые) глиальные пограничные мембраны, являющиеся одним из структурных компонентов гематоэнцефалического барьера. Олигодендроциты — малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системе и в зависимости от области локализации подразделяются на: 1) мантийные глиоциты (окружают тела нервных клеток в нервных и вегетативных ганглиях); 2) леммоциты, или шванновские клетки (окружают отростки нервных клеток, вместе с которыми образуют нервные волокна); 3) концевые глиоциты (сопровождают концевые ветвления дендритов чувствительных нервных клеток). Микроглия представлена мелкими отростчатыми клетками, выполняющими защитную функцию — фагоцитоз. На основании этого их называют глиальными макрофагами. Большинство исследователей считают, что глиальные макрофаги (как и любые другие макрофаги) являются клетками мезенхимального происхождения.
    14. Нейроглия

    Клетки глии выполняют трофическую, опорную, разграничительную, защитную, секреторную функции, участвуют в проведении нервного импульса, поддерживают гомеостаз нервной ткани, участвуют в образовании гемото-энцефалического барьера. Нейроглия делится на две разновидности: макроглию и микроглию, или глиальные макрофаги. В свою очередь, макроглия делится на эпендимоглию, астроглию, олигодендроглию. Некоторые ученые указывают на наличие четвертого вида макроглии — мультипотенциальной, способной превращаться в другие виды макроглии. По другим взглядам, так называемая мультипотенциальная глия представляет собой камбий для макроглии. Эпендимная глия. Выстилает центральный канал спинного мозга, полости желудочков головного мозга. Эта глия имеет вид однослойного эпителия (по Н.Г. Хлопину, эпителий эпендимоглиального типа) На поверхности, обращенной в сторону канала, на глиальных клетках есть реснички. От базалыюй части клетки отходят отростки, которые идут через всю толщу головного и спинного мозга и соединяются друг с другом на наружной поверхности, участвуя в образовании наружной глиальной пограничной мембраны. Боковыми сторонами эпенимоциты связаны друг с другом при помощи межклеточных контактов. В области сосудистых сплетений, секретирующих спинномозговую жидкость, находится разновидность эпендимоглии, называемая хороидной эпендимоглией. Ее клетки имеют кубическую форму и покрывают выпячивания мягкой мозговой оболочки, вдающиеся в просвет желудочков головного мозга. Апикальные поверхности хороидных эпендимоцитов имеют многочисленные микроворсинки, базальные формируют многочисленные ножки, переплетающиеся и образующие своеобразный базальный лабиринт. Боковыми поверхностями клетки тесно связаны друг с другом. Танициты, находящиеся в стенках 3-го желудочка, воронкового кармана и срединного возвышения, также относятся к эпендимоглии. Танициты имеют кубическую или призматическую форму. На апикальной поверхности несут микроворсинки и отдельные реснички. От базальной поверхности клеток отходит отросток, идущий к капилляру и образующий на нем пластинчатое расширение. Радиальные глиоциты как разновидность эпендимоглии описаны выше. Все глиоциты лежат на базальной мембране. Функции эпендимоглии: опорная, защитная, секреторная (секреция церебральной жидкости), разграничительная, защитная, трофическая. Эпендимоглия образует нейро-ликворный и гемато-ликворный барьеры (соответственно барьеры между нейроцитами и ликвором, кровью и ликвором). Танициты осуществляют транспорт веществ из ликвора в кровеносные сосуды, осуществляют тем самым связь между этими двумя жидкими системами. Астроцитная глия. Составляет опорную структуру головного и спинного мозга. Маркером астроглии является глиальный фибриллярный кислый белок (ГФКБ), из которого построены промежуточные филаменты. Есть две разновидности астроглии: плазматическая и волокнистая. В сером веществе преобладает плазматическая астроглия, а в белом — волокнистая Плазматическая глия имеет короткие и толстые отростки, богатые цитоплазмой различными органеллами, включениями гликогена и с невысоким содержанием промежуточных филаментов. Волокнистая астроглия имеет тонкие длинные отростки, в которых содержится большое количество фибриллярного аппарата. За счет отростков глиоцитов создаются глиальные опорные и разграничительные структуры (мембраны) в белом веществе. При помощи отростков астроциты контактируют не только друг с другом, но также с клетками олигодендроглии и эпендимоглии. Плазматическая астроглия создает глиальные пограничные мембраны вокруг сосудов и участвует в образовании гематоэнцефалического барьера (ГЭБ). Функции астроглии: опорная; барьерно-защитная (участие в образовании ГЭБ; астроциты имеют выраженную способность к фагоцитозу, переработке и представлению антигенов, выработке медиаторов иммунных реакций); разграничительная; транспортная (участие в аксотоке); трофическая; регуляторная и метаболическая (астроциты способны захватывать медиатор из синаптической щели и передавать его нейрону, участвуют в метаболизме медиаторов); пластическая (при повреждении мозга формируют глиальный рубец). Олигодендроглия. Эта разновидность глии имеет небольшое число тонких отростков (в переводе с греческого термин "олигодендроглия" означает "глия с малым количеством отростков"). Тела клеток имеют небольшие размеры и треугольную форму. Они окружают сосуды ЦНС, образуют оболочки вокруг тел нейроцитов и вокруг их отростков и нервных окончаний. В связи с этим все олигодендроглиоциты делятся на несколько групп. 1. Мантийная, или сателлитная, глия окружает тела нейроцитов. Клетки имеют уплощенную форму, небольшое округлое или овальное ядро.2 Леммоциты, или шванновские клетки, формируют глиальные оболочки вокруг отростков нейроцитов, участвуя в образовании нервных волокон.3. Свободная олигодендроглия ЦНС.4. Олигодендроглия, принимающая участие в образовании нервных окончаний (разновидность леммоцитов).Функции олигодендроглии: 1) барьерно-защитная; 2) изоляция рецептивных зон и отростков нейроцитов, выработка миелина; 3) участие в проведении нервного импульса; 4) регуляция метаболизма нейроцитов; захват медиаторов, участие в их обмене.Микроглия. Это разновидность глиальных макрофагов. Образуется из моноцитов крови. Клетки имеют небольшие размеры, уплотненную цитоплазму и тонкие ветвящиеся отростки. В цитоплазме большое содержание лизосом. В ядре преобладает гетерохроматин. Функции. Глиальные макрофаги активно передвигаются по нервной ткани и проявляют фагоцитарную активность, поглощают гибнущие нейроны и нервные волокна. При раздражении они теряют отростчатую форму и округляются. Такие клетки часто называют зернистыми шарами. Активированные микроглиоциты способны к переработке и представлению антигенов, продукции медиаторов иммунных реакций.

    16. Нервные волокна и окончания

    Нервные волокна представляют собой комплексные образования, включающие следующие элементы: 1) отростки нервных клеток; 2) глиальные клетки; 3) соединительно-тканную пластинку. Главной функцией нервных волокон является проведение нервных импульсов. Отростки нервных клеток проводят нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функции нервные волокна подразделяются на две разновидности: 1) безмиелиновые; 2) миелиновые. Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько осевых цилиндров (волокна кабельного типа). Строение миелинового нервного волокна. Миелиновое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей: 1) осевой цилиндр один и погружается в центральную часть цепи леммоцита; 2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой; 3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна; 4) на периферии расположена базальная пластинка. На поперечном сечении миелинового нервного волокна видны следующие структурные элементы: 1) осевой цилиндр; 2) миелиновый слой; 3) неврилемма; 4) базальная пластинка. По ходу миелинового нервного волокна видны границы соседних леммоцитов — узловые перехваты (перехваты Ранвье), а также участки между двумя перехватами (межузловые сегменты), каждый из которых соответствует протяженности одного леммоцита. В каждом межузловом сегменте отчетливо прослеживаются насечки миелина — прозрачные участки. Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется сальтаторным способом проведения нервных импульсов: скачками от одного перехвата к другому. Нервное волокно это совокупность нервных и глиальных клеток, после его повреждения отмечается реакция. После пересечения наиболее заметные изменения проявляются в дистальном отделе нервного волокна, где отмечается распад осевого цилиндра. Леммоциты, окружающие этот участок осевого цилиндра, не погибают, а округляются, пролиферируют и образуют тяж глиальных клеток по ходу распавшегося нервного волокна. В перикарионе нервной клетки с отсеченным отростком проявляются признаки раздражения: набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства. В проксимальном отделе нервного волокна на конце осевого цилиндра образуется расширение: колба роста, которая постепенно врастает в тяж глиальных клеток.

    Нерв, нервные окончания. Не следует смешивать понятия «нервное волокно» и «нерв». Нерв — комплексное образование, состоящее из: 1) нервных волокон; 2) рыхлой волокнистой соединительной ткани, образующей оболочки нерва. Среди оболочек нерва различают: 1) эндоневрий (соединительную ткань, окружающую отдельные нервные волокна); 2) периневрий (соединительную ткань, окружающую пучки нервных волокон); 3) эпиневрий (соединительную ткань, окружающую нервный ствол). Нервные окончания, или концевые нервные аппараты. Представляют собой окончания нервных волокон. Если осевой цилиндр нервного волокна является дендритом чувствительной нервной клетки, то его концевой аппарат образует рецептор. Если осевой цилиндр является аксоном нервной клетки, то его концевой аппарат образует эффекторное или синаптическое окончание. Следовательно, нервные окончания подразделяются на три основные группы: 1) эффекторные (двигательные или секреторные); 2) рецептурные (чувствительные); 3) синаптические. Двигательное нервное окончание — концевой аппарат аксона на поперечно#полосатом мышечном волокне или на миоците. В нем различают три части: 1) нервный полюс; 2) синаптическую щель; 3) мышечный полюс. В каждом терминальном ветвлении аксона содержатся следующие структурные элементы: 1) пресинаптическая мембрана; 2) синаптические пузырьки с медиатором (ацетилхолином); 3) скопление митохондрий с продольными кристами. Мышечный полюс, или полотна моторной бляшки, включает: 1) постсинаптическую мембрану — специализированный участок плазмолеммы миосимпласта, содержащий белки-рецепторы к ацетилхолину; 2) участок саркоплазмы миосимпласта, в котором отсутствуют миофибриллы и содержится скопление ядер и саркосом. Рецепторные нервные окончания классифицируются по нескольким признакам: 1) по локализации: а) интерорецепторы (рецепторы внутренних органов); б) экстрорецепторы (воспринимают внешние раздражители: репетиры кожи, органов чувств); в) проприорецепторы (локализуются в аппарате движения); 2) по специфичности восприятия (по модальности): а) хеморецепторы; б) механорецепторы; в) барореценторы; г) терморецепторы (тепловые, холодовые); 3) по строению: а) свободные; б) несвободные (инкапсулированные, не инкапсулированные).

    17. Рефлекторная дуга, и ее составные компоненты

    Рефлекторная дуга — это цепь нейронов, связанных синапсами, обеспечивающая проведение импульса от рецептора к рабочему органу (мышце, железе). Различают простые и сложные рефлекторные дуги. Простые рефлекторные дуги состоят из чувствительного и двигательного нейронов, связанных синапсом. Такие дуги состоят из следующих частей: рецептора, образованного дендритом чувствительного нейрона; дендрита, перикариона, аксона сенсорного нейрона: синапса сенсорного нейрона с эфферентным нейроном; дендрита, перикариона и аксона эфферентного нейрона; эффекторного (двигательного) нервного окончания. В сложных рефлекторных дугах большое количество нейронов, причем их количество увеличивается за счет вставочных нейронов. Возбуждение по рефлекторной дуге передается только в одном направлении, поскольку синапсы осуществляют их поляризацию.

    18. Орган зрения. Оболочки глазного яблока. Строение роговицы и сетчатки
    В глазном яблоке выделяют фиброзную оболочку (tunica fibrosa bulbi), которая представляет собой соединительнотканный слой глазного яблока. Она служит опорой и защитой для других оболочек и частей глаза. Задние 2/3 волокнистой оболочки называются белочной оболочкой, или склерой, а передняя 1/3 — роговой оболочкой, или роговицей. На месте соприкосновения этих участков находится небольшая борозда склеры (sulcus sclerae).
    Склера (sclera) содержит много эластических и коллагеновых волокон и мало основного вещества соединительной ткани; они образуют плотную пластинку, в наружном слое которой отсутствуют пигментные клетки. Белочная оболочка на медиальной части заднего полюса глаза имеет решетчатое строение. Через ее отверстия проникают отростки нейронов, формирующие зрительный нерв. В области заднего полюса и экватора глазного яблока толщина белочной оболочки 0,3 — 0,4 мм, а около роговицы — 0,6 мм. В белочной оболочке на ее белом фоне иногда хорошо видны артерии.
    Вены находятся преимущественно в глубоких слоях белочной оболочки и не видны через глазную щель. Особенно хорошо развита венозная пазуха склеры (sinus venosus sclerae), которая проецируется на поверхности глаза по sulcus sclerae. Через венозный канал осуществляется резорбция жидкости из передней камеры глаза. С внутренней стороны около венозного синуса к фиброзной оболочке присоединяется радужная оболочка, которая образует гребенчатую связку (lig. pectinatum anguli iridocornealis). Эта связка соединяет наружный край радужной оболочки со склерой.
    Роговая оболочка, или роговица (cornea), находящаяся на переднем полюсе глаза, представляет собой выпуклую кнаружи прозрачную  пластинку, имеющую пять слоев эпителия и соединительнотканных волокон. Последние заключены в коллоидное вещество мукополисахаридной природы. Роговица в центральной части несколько тоньше (0,8 мм), чем по периферии (1,1 мм). Она содержит много чувствительных нервных окончаний и лишена кровеносных сосудов, ее питание осуществляется путем диффузии питательных веществ из жидкости передней камеры глаза и сосудов белочной оболочки, прилежащих к краю роговицы.
    Строение роговицы своеобразно, и это обусловливает ее прозрачность. Вместе с жидкостью передней камеры глазного яблока она образует двояковыпуклую линзу, имеющую около 30D, что составляет главную преломляющую среду светового пучка.

    2. Сосудистая оболочка (tunica vasculosa) является средним слоем глазного яблока. Она содержит сплетение кровеносных сосудов и пигментных клеток. Эта оболочка разделяется на три части: радужную оболочку, ресничное тело, собственно сосудистую оболочку.

    Радужная оболочка, или радужка (iris), толщиной 0,4 мм, относится к передней части сосудистой оболочки. Она имеет вид циркулярной пластинки со зрачком (pupilla) в центре. Ширина зрачка непостоянна, от 2 до 8 мм. Радужка наружным краем (margo ciliaris) сращена с белочной оболочкой и ресничным телом при помощи гребенчатой связки; внутренний край (margo pupillaris) ее почти ровный и ограничивает зрачок. В зависимости от интенсивности освещения величина зрачка автоматически изменяется, что обеспечивается сокращением радиальных (m. dilatator pupillae) и циркулярных (m. sphincter pupillae) мышечных волокон. Первые иннервируются симпатическими волокнами, вторые — парасимпатическими. В формировании радужки вместе с мышцами принимают участие эластические волокна, кровеносные сосуды, нервы и пигментные клетки; они определяют окраску радужной оболочки. Радужная оболочка омывается жидкостью передней и задней камер глаза.
    Ресничное тело (corpus ciliare) находится с внутренней поверхности на месте перехода склеры в роговицу. На поперечном разрезе имеет форму треугольника (рис. 546), а при осмотре со стороны заднего полюса — форму циркулярного валика, на внутренней поверхности которого находятся радиально ориентированные отростки (processus ciliares) числом около 70. Ресничное тело и радужка прикреплены к склере гребенчатыми связками, имеющими губчатое строение. Эти полости заполнены жидкостью, поступающей из передней камеры, а затем в круговой венозный синус (шлеммов канал). От ресничных отростков отходят кольцеобразные связки, которые вплетаются в капсулу хрусталика. Процесс аккомодации, т. е. приспособления глаза к близкому или дальнему видению, возможен благодаря ослаблению или натяжению кольцеобразных связок; они находятся под контролем мышц ресничного тела, состоящих из меридиональных и круговых, волокон (fibrae meridionales et circulares). При сокращении круговых мышц ресничные отростки приближаются к центру ресничного кружка и кольцеобразные связки ослабляются. За счет внутренней упругости хрусталик расправляется и увеличивается кривизна; тем самым уменьшается фокусное расстояние.
    Одновременно с сокращением круговых мышечных волокон происходит сокращение и меридиональных мышечных волокон, которые подтягивают заднюю часть сосудистой оболочки и ресничное тело настолько, насколько уменьшается фокусное расстояние светового пучка. При расслаблении вследствие эластичности ресничное тело принимает исходное положение и, натягивая кольцеобразные связки, напрягает капсулу хрусталика, уплощая его; при этом задний полюс глаза также занимает исходное положение.
    В старческом возрасте часть мышечных волокон ресничного тела замещается соединительной тканью. Эластичность и упругость хрусталика также уменьшаются, что приводит к нарушению зрения.
    Собственно сосудистая оболочка (chorioidea) занимает 2/3 задней части глазного яблока. Оболочка состоит из эластических волокон, кровеносных и лимфатических сосудов, пигментных клеток, создающих темно-коричневый фон. Она рыхло сращена с внутренней поверхностью белочной оболочки и легко смещается при аккомодации. У животных в этой части сосудистой оболочки скапливаются соли кальция, которые образуют глазное зеркало, отражающее световые лучи, что создает условия для свечения подобных глаз в темноте.

    3. Сетчатая оболочка, или сетчатка (retina), самая внутренняя, распространяется до зазубренного края (area serrata), лежащего у места перехода ресничного тела в собственно сосудистую оболочку. По этой линии сетчатка делится на переднюю и заднюю части.
    Сетчатая оболочка имеет 11 слоев, которые можно объединить в два листка: пигментный — наружный и мозговой — внутренний. В мозговом слое располагаются светочувствительные клетки — палочки и колбочки; их наружные светочувствительные членики направлены к пигментному слою, т. е. кнаружи. Следующий слой — биполярные клетки, образующие контакты с палочками, колбочками и ганглиозными клетками, аксоны которых формируют зрительный нерв. Кроме того, имеются горизонтальные клетки, расположенные между палочками и биполярными клетками и амакриновые клетки для объединения функции ганглиозных клеток. В сетчатке человека около 125 млн. палочек и около 6,5 млн. колбочек. В желтом пятне имеются только колбочки, а палочки располагаются по периферии сетчатки. Пигментные клетки сетчатки изолируют каждую светочувствительную клетку от другой и от побочных лучей, создавая условия для образного зрения.
    При ярком освещении палочки и колбочки погружаются в пигментный слой. У трупа сетчатка матово-белая, без характерных анатомических особенностей. При осмотре с помощью офтальмоскопа сетчатки (глазного дна) у живого человека она имеет ярко-красный фон вследствие просвечивания в сосудистой оболочке крови.
    На заднем полюсе глаза различимо овальное пятно — диск зрительного нерва (discus n. optici) размером 1,6—1,8 мм с углублением в центре (excavatio disci). К этому пятну радиально сходятся ветви зрительного нерва, лишенные миелиновой оболочки, и вены; в зрительную часть сетчатки расходятся артерии. Эти сосуды снабжают кровью только сетчатку.
    19. Орган слуха. Строение кортиева органа

    На барабанной стенке и по всей длине улиткового протока  (улиткового хода) располагается спиральный нервный аппарат преобразования звука - кортиев орган, рецепторный аппарат органа слуха.

    Он лежит на базилярной (основной) мембране и состоит из нескольких компонентов: трех рядов наружных волосковых клеток, одного ряда внутренних волосковых клеток, желеобразной текториальной (покровной) мембраны и поддерживающих (опорных) клеток нескольких типов. В кортиевом органе человека 15000 наружных и 3500 внутренних волосковых клеток. Опорную структуру кортиева органа составляют столбчатые клетки и ретикулярная пластинка (сетчатая мембрана) . Из верхушек волосковых клеток выступают пучки стереоцилий - ресничек, погруженных в текториальную мембрану.

    Покровная мембрана тянется по всей его длине в виде спирали, которая касается вершин рецепторных волосковых клеток, лежащих на базилярной мембране. При перемещении этих мембран относительно друг друга волоски сдвигаются и волосковые клетки вырабатывают нервный импульс, далее передаваемый в мозг для анализа. 

    Здесь происходит преобразование звуковых волн в электрические импульсы. 

    Волосковые клетки кортиева органа имеют только стереоцилиикиноцилии в них редуцированы. 

    Различают внутренние и наружные волосковые клетки , последние расположены в три ряда, тогда как внутренние образуют один. У человека приблизительно 3 500 внутренних и 12 000 наружных волосковых клеток. Они являются вторичными сенсорными клетками . Внутренние и наружные волосковые клетки являются механорецепторами, но функция их различна. Внутренние волосковые клетки - это собственно звуковые рецепторы, и поэтому они иннервируются только афферентными волокнами. Наружные же волосковые клетки имеют некоторые черты сходства с мышечными клетками, иннервируются не только афферентными, но и эфферентными волокнами и способны к движениям. Благодаря этим движениям кортиев орган не только реагирует на звуковое раздражение, но и сам является источником звуковых колебаний - так называемой отоакустической эмиссии. Эти колебания возникают спонтанно и в ответ на звуковое раздражение, и их можно уловить с помощью чувствительного микрофона, помещенного в наружный слуховой проход. Движения наружных волосковых клеток возникают в ответ на механическое (звуковое) и электрическое раздражение, электрофоретическое подведение ацетилхолина, изменения внутриклеточных и внеклеточных ионных концентраций. Эти движения модулируются импульсами, поступающими по эфферентным волокнам оливоулиткового пути. Различают быстрые движения наружных волосковых клеток и медленные движения наружных волосковых клеток.Медленные движения (удлинения и укорочения) происходят при увеличении внутриклеточной концентрации кальция в присутствии АТФ, под действием ацетилхолина и при изменении ионных концентраций (например, при увеличении внеклеточной концентрации калия, приводящем к деполяризации). Быстрые движения возникают при звуковом раздражении и стимуляции постоянным током. Эти движения запускаются изменениями мембранного потенциала и создаются так называемой электрокинетической мембраной, расположенной на наружной или боковых поверхностях наружных волосковых клеток. Этот сравнительно недавно обнаруженный и, возможно, уникальный механизм способен генерировать колебания звуковой частоты. Благодаря движениям наружных волосковых клеток резко усиливаются колебания внутренних волосковых клеток в ответ на звуки соответствующей частоты. Таким образом, наружные волосковые клетки могут выполнять функцию того самого улиткового усилителя, который обеспечивает исключительную чувствительность органа слуха и его способность тонко различать частоты и который так долго искали физиологи.

    Афферентные нервные волокна , иннервирующие волосковые клетки, приходят от биполярных клеток спирального ганглия , который расположен в центре улитки. Центральные отростки этих клеток направляются в центральную нервную систему . Около 90% нервных волокон спирального ганглия оканчиваются на внутренних волосковых клетках, каждая из которых образует контакты с множеством нервных волокон. Только оставшиеся 10% волокон иннервируют значительно более многочисленные наружные волосковые клетки. Чтобы охватить все наружные клетки, эти волокна сильно разветвляются. Кортиев орган получает иэфферентные волокна , функциональное значение которых неясно.

     Кортиев орган иннервируют нервные волокна улитковой части VIII черепного нерва 

    20. Кровь
    Кровь — внутренняя среда организма, образованная жидкой соединительной тканью. Состоит из плазмы и форменных элементов: клеток лейкоцитов и постклеточных структур (эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями телаввиду наличия гистогематических барьеров. В среднем, массовая доля крови к общей массе тела человека составляет 6,5-7 %. У позвоночных кровь имеет красный цвет (от бледно- до тёмно-красного), который ей придаёт гемоглобин, содержащийся в эритроцитах. У некоторых моллюсков и членистоногих кровь имеет голубой цвет за счёт наличия гемоцианина.

    Свойства крови:

    Суспензионные свойства зависят от белкового состава плазмы крови, и от соотношения белковых фракций (в норме альбуминов больше, чем глобулинов).

    Коллоидные свойства связаны с наличием белков в плазме. За счёт этого обеспечивается постоянство жидкого состава крови, так как молекулы белка обладают способностью удерживать воду.

    Электролитные свойства зависят от содержания в плазме крови анионов и катионов. Электролитные свойства крови определяются осмотическим давлением крови.
    Весь объём крови живого организма условно делится на периферический (находящийся и циркулирующий в русле сосудов) и кровь, находящуюся в кроветворных органах и периферических тканях. Кровь состоит из двух основных компонентов: плазмы и взвешенных в нейформенных элементов. У взрослого здорового человека объём плазмы достигает 50—60 % цельной крови, а форменных элементов крови составляют около 40—50 %. Отношение форменных элементов крови к её общему объёму, выраженное в процентах или представленное в виде десятичной дроби с точностью до сотых, называется гематокритным числом. Таким образом, гематокрит — часть объёма крови, приходящаяся на эритроциты (иногда определяется как отношение всех форменных элементов (эритроциты, лейкоциты, тромбоциты) к общему объёму крови). Определение гематокрита проводится с помощью специальной стеклянной градуированной трубочки — гематокрита, которую заполняют кровью и центрифугируют. После этого отмечают, какую её часть занимают форменные элементы крови (лейкоциты, тромбоцитыи/или эритроциты). В медицинской практике для определения показателя гематокрита (Ht или PCV) всё шире распространяется использование автоматических гематологических анализаторов.

    Плазма крови  — жидкая часть крови, которая содержит воду и взвешенные в ней вещества — белки и другие соединения. Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы). Гистологически плазма является межклеточным веществом жидкой соединительной ткани (крови).

    У взрослого человека форменные элементы крови составляют около 40—50 %, а плазма — 50—60 %. Форменные элементы крови представленыэритроцитамитромбоцитами и лейкоцитами:

    Эритроциты (красные кровяные тельца) — самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке. В эритроцитах содержится железосодержащий белок — гемоглобин. Он обеспечивает главную функцию эритроцитов — транспорт газов, в первую очередь — кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин, который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в формекарбогемоглобина переносит из тканей в лёгкие углекислый газ.

    Тромбоциты (кровяные пластинки) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга (мегакариоцитов). Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от кровопотери.

    Лейкоциты (белые клетки крови) являются частью иммунной системы организма. Они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов — защита от чужеродных тел и соединений. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества; В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.

    Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новыхорганами кроветворения. Главным из них у человека и других млекопитающих является костный мозг. У человека красный, или кроветворный, костный мозг расположен в основном втазовых костях и в длинных трубчатых костях. Основным фильтром крови является селезёнка (красная пульпа), осуществляющая в том числе и иммунологический её контроль (белая пульпа).
    21. Эпителий
    Эпителий или эпителиальная ткань — слой клеток, выстилающий поверхность (эпидермис) и полости тела, а также слизистые оболочки внутренних органов, пищевого тракта, дыхательной системы, мочеполовые пути.
    Существуют несколько классификаций эпителиев, в основу которых положены различные признаки: происхождение, строение, функции. Из них наибольшее распространение получила морфологическая классификация, учитывающая главным образом отношение клеток к базальной мембране и их форму.

    Морфологическая классификация

    Однослойный эпителий может быть однорядным и многорядным. У однорядного эпителия все клетки имеют одинаковую форму — плоскую, кубическую или призматическую, их ядра лежат на одном уровне, то есть в один ряд. У многорядного эпителия различают окрашиваемые гематоксилин-эозином, призматические и вставочные клетки; последние, в свою очередь, делятся по принципу отношения ядра к базальной мембране на высокие вставочные и низкие вставочные клетки.

    Многослойный эпителий бывает ороговевающим, неороговевающим и переходным. Эпителий, в котором происходят процессы ороговения, связанные с дифференцировкой клеток верхних слоев в плоские роговые чешуйки, называют многослойным плоским ороговевающим. При отсутствии ороговения эпителий называется многослойным плоским неороговевающим.

    Переходный эпителий выстилает органы, подверженные сильному растяжению — мочевой пузырь, мочеточники и др. При изменении объёма органа толщина и строение эпителия также изменяется.

    Онтофилогенетическая классификация 

    Наряду с морфологической классификацией, используется онтофилогенетическая классификация, созданная российским гистологом Н. Г. Хлопиным. В основе её лежат особенности развития эпителиев из тканевых зачатков.

    Эпидермальный тип эпителия образуется из эктодермы, имеет многослойное или многорядное строение, приспособлен к выполнению прежде всего защитной функции.

    Энтодермальный тип эпителия развивается из энтодермы, является по строению однослойным призматическим, осуществляет процессы всасывания веществ, выполняет железистую функцию.

    Целонефродермальный тип эпителия развивается из мезодермы, по строению однослойный, плоский, кубический или призматический; выполняет барьерную или экскреторную функцию.

    Эпендимоглиальный тип представлен специальным эпителием, выстилающим, например, полости мозга. Источником его образования является нервная трубка.

    Ангиодермальный тип эпителия образуется из мезенхимы, выстилает изнутри кровеносные сосуды.

    Однослойный эпителий 


    Однослойный плоский эпителий (эндотелий и мезотелий). Эндотелий выстилает изнутри кровеносные, лимфатические сосуды, полости сердца. Эндотелиальные клетки плоские, бедны органеллами и образуют эндотелиальный пласт. Хорошо развита обменная функция. Они создают условия для кровотока. При нарушении эпителия образуются тромбы. Эндотелий развивается из мезенхимы. Вторая разновидность — мезотелий — развивается из мезодермы. Выстилает все серозные оболочки. Состоит из плоских полигональной формы клеток, связанных между собой неровными краями. Клетки имеют одно, реже два уплощенных ядра. На апикальной поверхности имеются короткие микроворсинки. Они обладают всасывательной, выделительной и разграничительной функциями. Мезотелий обеспечивает свободное скольжение внутренних органов относительно друг друга. Мезотелий выделяет на свою поверхность слизистый секрет. Мезотелий предотвращает образование соединительнотканных спаек. Достаточно хорошо регенерируют за счет митоза.

    Однослойный кубический эпителий развивается из энтодермы и мезодермы. На апикальной поверхности имеются микроворсинки, увеличивающие рабочую поверхность, а в базальной части цитолемма образует глубокие складки, между которыми в цитоплазме располагаются митохондрии, поэтому базальная часть клеток выглядит исчерченной. Выстилает мелкие выводные протоки поджелудочной железы, желчные протоки и почечные канальцы.

    Однослойный цилиндрический эпителий встречается в органах среднего отдела пищеварительного канала, пищеварительных железах, почках, половых железах и половых путях. При этом строение и функция определяются его локализацией. Развивается из энтодермы и мезодермы. Слизистую желудка выстилает однослойный железистый эпителий. Он вырабатывает и выделяет слизистый секрет, который распространяется по поверхности эпителия и защищает слизистую оболочку от повреждения. Цитолемма базальной части также имеет небольшие складки. Эпителий обладает высокой регенерацией.

    Почечные канальцы и слизистая оболочка кишечника выстлана каёмчатым эпителием. В каёмчатом эпителии кишечника преобладают каёмчатые клетки — энтероциты. На их верхушке располагаются многочисленные микроворсинки. В этой зоне происходит пристеночное пищеварение и интенсивное всасывание продуктов питания. Слизистыебокаловидные клетки вырабатывают на поверхность эпителия слизь, а между клетками располагаются мелкие эндокринные клетки. Они выделяют гормоны, которые обеспечивают местную регуляцию.

    Однослойный многорядный реснитчатый эпителий. Он выстилает воздухоносные пути и имеет эктодермальное происхождение. В нём клетки разной высоты, и ядра располагаются на разных уровнях. Клетки располагаются пластом. Под базальной мембраной лежит рыхлая соединительная ткань с кровеносными сосудами, а в эпителиальном пласте преобладают высокодифференцированные реснитчатые клетки. У них узкое основание, широкая верхушка. На верхушке располагаются мерцательные реснички. Они полностью погружены в слизь. Между реснитчатыми клетками находятся бокаловидные — это одноклеточные слизистые железы. Они вырабатывают слизистый секрет на поверхность эпителия. Имеются эндокринные клетки. Между ними располагаются короткие и длинные вставочные клетки, это стволовые клетки, малодифференцированные, за счёт них идёт пролиферация клеток. Мерцательные реснички совершают колебательные движения и перемещают слизистую плёнку по воздухоносным путям к внешней среде.

    Многослойный эпителий 


    Многослойный плоский неороговевающий эпителий. Он развивается из эктодермы, выстилает роговицу, передний отдел пищеварительного канала и участок анального отдела пищеварительного канала, влагалище. Клетки располагаются в несколько слоёв. На базальной мембране лежит слой базальных или цилиндрических клеток. Часть из них — стволовые клетки. Они пролиферируют, отделяются от базальной мембраны, превращаются в клетки полигональной формы с выростами, шипами и совокупность этих клеток формирует слой шиповатых клеток, располагающихся в несколько этажей. Они постепенно уплощаются и образуют поверхностный слой плоских, которые с поверхности отторгаются во внешнюю среду.

    Многослойный плоский ороговевающий эпителий — эпидермис, он выстилает кожные покровы. В толстой коже (ладонные поверхности), которая постоянно испытывает нагрузку, эпидермис содержит 5 слоёв:

    1 — базальный слой — содержит стволовые клетки, дифференцированные цилиндрические и пигментные клетки (пигментоциты).

    2 — шиповатый слой — клетки полигональной формы, в них содержатся тонофибриллы.

    3 — зернистый слой — клетки приобретают ромбовидную форму, тонофибриллы распадаются и внутри этих клеток в виде зёрен образуются белок кератогиалин, с этого начинается процесс ороговения.

    4 — блестящий слой — узкий слой, в нём клетки становятся плоскими, они постепенно утрачивают внутриклеточную структуру, и кератогиалин превращается в элеидин.

    5 — роговой слой — содержит роговые чешуйки, которые полностью утратили строение клеток, содержат белок кератин. При механической нагрузке и при ухудшении кровоснабжения процесс ороговения усиливается.

    В тонкой коже, которая не испытывает нагрузки, отсутствует блестящий слой.

    Многослойный кубический и цилиндрический эпителии встречаются крайне редко — в области конъюнктивы глаза и области стыка прямой кишки между однослойным и многослойным эпителиями.

    Переходный эпителий (уроэпителий) выстилает мочевыводящие пути и аллантоис. Содержит базальный слой клеток, часть клеток постепенно отделяется от базальной мембраны и образует промежуточный слой грушевидных клеток. На поверхности располагается слой покровных клеток — крупные клетки, иногда двухрядные, покрыты слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов. Эпителий способен выделять секрет, защищающий его клетки от воздействия мочи.

    Железистый эпителий — разновидность эпителиальной ткани, которая состоит из эпителиальных железистых клеток, которые в процессе эволюции приобрели ведущее свойство вырабатывать и выделять секреты. Такие клетки называются секреторными (железистыми) — гландулоцитами. Они имеют точно такую же общую характеристику как покровный эпителий. Расположен в железах кожи, кишечнике, слюнных железах, железах внутренней секреции и др. Cреди эпителиальных клеток находятся секреторные клетки, их 2 вида.

    экзокринные — выделяют свой секрет во внешнюю среду или просвет органа.

    эндокринные — выделяют свой секрет непосредственно в кровоток.

    Характерные особенности


    Эпителии представляют собой пласты (реже тяжи) клеток — эпителиоцитов. Между ними почти нет межклеточного вещества, и клетки тесно связаны друг с другом с помощью различных контактов. Эпителии располагаются на базальных мембранах, отделяющих эпителиоциты от подлежащей соединительной ткани. Эпителий обладает полярностью. Два отдела клеток - базальный (лежащий в основании) и апикальный (верхушечный), - имеют разное строение. Эпителий не содержит кровеносных сосудов. Питание эпителиоцитов осуществляется диффузно через базальную мембрану со стороны подлежащей соединительной ткани. Эпителиям присуща высокая способность к регенерации. Восстановление эпителия происходит вследствие митотического деления и дифференцировки стволовых клеток


    1   2   3


    написать администратору сайта