Главная страница

Технико-экономическое обоснование проекта. 1 Общая суть и базовое назначение сппр


Скачать 146.46 Kb.
Название1 Общая суть и базовое назначение сппр
АнкорТехнико-экономическое обоснование проекта
Дата14.04.2022
Размер146.46 Kb.
Формат файлаrtf
Имя файлаbibliofond.ru_880342.rtf
ТипДокументы
#474815

1 Общая суть и базовое назначение СППР

Система поддержки принятия решений представляет собой комплекс программных инструментальных средств для анализа данных, моделирования, прогнозирования и принятия управленческих решений, состоящий из собственных разработок корпорации и приобретаемых программных продуктов (Oracle, IBM, Cognos).

Теоретические исследования в области разработки первых систем поддержки принятия решений проводились в технологическом институте Карнеги в конце 50-х начале 60-х годов XX века. Объединить теорию с практикой удалось специалистам из Массачусетского технологического института в 60-х годах. В середине и конце 80-х годов XX столетия стали появляться такие системы, как EIS, GDSS, ODSS. В 1987 году компания Texas Instruments разработала для United Airlines Gate Assignment Display System. Это позволило значительно снизить убытки от полетов и отрегулировать управление различными аэропортами, начиная от Международного аэропорта O’Hare в Чикаго и заканчивая Stapleton в Денвере, штат Колорадо. В 90-х годах сфера возможностей СППР расширялась благодаря внедрению хранилищ данных и инструментов OLAP. Появление новых технологий отчетности сделало СППР незаменимой в менеджменте.

Концепция систем поддержки принятия решений (СППР) включает целый ряд средств, объединенных общей целью - способствовать принятию рациональных и эффективных управленческих решений.

Система поддержки принятия решений (СППР) - компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности. Это диалоговая система, использующая правила принятия решений и соответствующие модели с базами данных, а также интерактивный компьютерный процесс моделирования.

СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных. СППР являются человеко-машинными системами, которые позволяют лицам, принимающим решения, использовать данные, знания, объективные и субъективные модели для анализа и решения неструктурированных и слабо формализуемых задач.

Процесс принятия решения - это получение и выбор наиболее оптимальной альтернативы с учетом просчета всех последствий. При выборе альтернатив- надо выбирать ту, которая наиболее полно отвечает поставленной цели, но при этом приходится учитывать большое количество противоречивых требований и, следовательно, оценивать выбранный вариант решения по многим критериям.

Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них "на глаз", без всестороннего анализа может приводить к грубым ошибкам.

2 Области применения

Телекоммуникационные компании используют СППР для подготовки и принятия комплекса решений, направленных на сохранение своих клиентов и минимизацию их оттока в другие компании. СППР позволяют компаниям более результативно проводить свои маркетинговые программы, вести более привлекательную тарификацию своих услуг.

Анализ записей с характеристиками вызовов позволяет выявлять категории клиентов с похожими стереотипами поведения, с тем чтобы дифференцировано подходить к привлечению клиентов той или иной категории.

Банковское дело. СППР используются для более качественного мониторинга различных аспектов банковской деятельности, таких как обслуживание кредитных карт, займов, инвестиций и так далее, что позволяет значительно повысить эффективность работы.

Выявление случаев мошенничества, оценка риска кредитования, прогнозирование изменений клиентуры - области применения СППР и методов добычи данных. Классификация клиентов, выделение групп клиентов со сходными потребностями позволяет проводить целенаправленную маркетинговую политику, предоставляя более привлекательные наборы услуг той или иной категории клиентов.

Страхование. Набор применений СППР в страховом бизнесе можно назвать классическим - это выявление потенциальных случаев мошенничества, анализ риска, классификация клиентов.

Обнаружение определенных стереотипов в заявлениях о выплате страхового возмещения, в случае больших сумм, позволяет сократить число случаев мошенничества в будущем.

Анализируя характерные признаки случаев выплат по страховым обязательствам, страховые компании могут уменьшить свои потери. Полученные данные приведут, например, к пересмотру системы скидок для клиентов, подпадающих под выявленные признаки.

Классификация клиентов дает возможность выявить наиболее выгодные категории клиентов, чтобы точнее ориентировать существующий набор услуг и вводить новые услуги.

Розничная торговля. Торговые компании используют технологии СППР для решения таких задач, как планирование закупок и хранения, анализ совместных покупок, поиск шаблонов поведения во времени.

Анализ данных о количестве покупок и наличии товара на складе в течение некоторого периода времени позволяет планировать закупку товаров, например, в ответ на сезонные колебания спроса на товар.

Часто, покупая какой-либо товар покупатель приобретает вместе с ним и другой товар. Выявление групп таких товаров позволяет, например, помещать их на соседних полках, с тем, чтобы повысить вероятность их совместной покупки.

Поиск шаблонов поведения во времени дает ответ на вопрос «Если сегодня покупатель приобрел один товар, то через какое время он купит другой товар?». Например, приобретая фотоаппарат, покупатель, вероятно, в ближайшем будущем станет приобретать пленку, пользоваться услугами по проявке и печати.

Медицина. Известно много экспертных систем для постановки медицинских диагнозов. Они построены главным образом на основе правил, описывающих сочетания различных симптомов различных заболеваний. С помощью таких правил узнают не только, чем болен пациент, но и как нужно его лечить. Правила помогают выбирать средства медикаментозного воздействия, определять показания - противопоказания, ориентироваться в лечебных процедурах, создавать условия наиболее эффективного лечения, предсказывать исходы назначенного курса лечения и т. п. Технологии Data Mining позволяют обнаруживать в медицинских данных шаблоны, составляющие основу указанных правил.

Молекулярная генетика и генная инженерия. Пожалуй, наиболее остро и вместе с тем четко задача обнаружения закономерностей в экспериментальных данных стоит в молекулярной генетике и генной инженерии. Здесь она формулируется как определение так называемых маркеров, под которыми понимают генетические коды, контролирующие те или иные фенотипические признаки живого организма. Такие коды могут содержать сотни, тысячи и более связанных элементов.

Прикладная химия. Методы Data Mining находят широкое применение в прикладной химии (органической и неорганической). Здесь нередко возникает вопрос о выяснении особенностей химического строения тех или иных соединений, определяющих их свойства. Особенно актуальна такая задача при анализе сложных химических соединений, описание которых включает сотни и тысячи структурных элементов и их связей.

3 Классификации СППР

По взаимодействию с пользователем выделяют три вида СППР:

· пассивные помогают в процессе принятия решений, но не могут выдвинуть конкретного предложения;

· активные непосредственно участвуют в разработке правильного решения;

· кооперативные предполагают взаимодействие СППР с пользователем. Выдвинутое системой предложение пользователь может доработать, усовершенствовать, а затем отправить обратно в систему для проверки. После этого предложение вновь представляется пользователю, и так до тех пор, пока он не одобрит решение.

По способу поддержки различают:

· модельно-ориентированные СППР, используют в работе доступ к статистическим, финансовым или иным моделям;

· СППР, основанные на коммуникациях, поддерживают работу двух и более пользователей, занимающихся общей задачей;

· СППР, ориентированные на данные, имеют доступ к временным рядам организации. Они используют в работе не только внутренние, но и внешние данные;

· СППР, ориентированные на документы, манипулируют неструктурированной информацией, заключенной в различных электронных форматах;

· СППР, ориентированные на знания, предоставляют специализированные решения проблем, основанные на фактах.

По сфере использования выделяют:

· Общесистемные - работают с большими СХД и применяются многими пользователями.

· Настольные СППР. Они являются небольшими системами и подходят для управления с персонального компьютера одного пользователя.

По архитектуре и принципу работы различают:

· Функциональные СППР.

Являются наиболее простыми с точки зрения архитектуры. Они распространены в организациях, не ставящих перед собой глобальных задач и имеющих невысокий уровень развития информационных технологий. Отличительной особенностью функциональных СППР является то, что анализу подвергаются данные, содержащиеся в файлах операционных систем. Преимуществами подобных СППР являются компактность из-за использования одной платформы и оперативность в связи с отсутствием необходимости перегружать данные в специализированную систему. Из недостатков можно отметить следующие: сужение круга вопросов, решаемых с помощью системы, снижение качества данных из-за отсутствия этапа их очистки, увеличение нагрузки на операционную систему с потенциальной возможностью прекращения ее работы.

· СППР, использующие независимые витрины данных.

Применяются в крупных организациях, имеющих несколько подразделений, в том числе отделы информационных технологий. Каждая конкретная витрина данных создается для решения определенных задач и ориентирована на отдельный круг пользователей. Это значительно повышает производительность системы. Внедрение подобных структур достаточно просто. Из отрицательных моментов можно отметить то, что данные многократно вводятся в различные витрины, поэтому могут дублироваться. Это повышает затраты на хранение информации и усложняет процедуру унификации. Наполнение витрин данных достаточно сложно в связи с тем, что приходится использовать многочисленные источники. Отсутствует единая картина бизнеса организации, вследствие того, что нет окончательной консолидации данных.

· СППР на основе двухуровневого хранилища данных.

Используется в крупных компаниях, данные которых консолидированы в единую систему. Определения и способы обработки информации в данном случае унифицированы. На обеспечение нормальной работы подобной СППР требуется выделить специализированную команду, которая будет ее обслуживать. Такая архитектура СППР лишена недостатков предыдущей, но в ней нет возможности структурировать данные для отдельных групп пользователей, а также ограничивать доступ к информации. Могут возникнуть трудности с производительностью системы.

· СППР на основе трехуровневого хранилища данных.

Такие СППР применяют хранилище данных, из которого формируются витрины данных, используемые группами пользователей, решающих сходные задачи. Таким образом, обеспечивается доступ, как к конкретным структурированным данным, так и к единой консолидированной информации. Наполнение витрин данных упрощается ввиду использования проверенных и очищенных данных, находящихся в едином источнике.

Имеется корпоративная модель данных. Такие СППР отличает гарантированная производительность. Но существует избыточность данных, которая ведет к росту требований на их хранение. Кроме того, необходимо согласовать подобную архитектуру с множеством областей, имеющих потенциально различные запросы.

В зависимости от функционального наполнения интерфейса системы выделяют два основных типа СППР: EIS и DSS. (Execution Information System) - информационные системы руководства предприятия. Эти системы ориентированы на неподготовленных пользователей, имеют упрощенный интерфейс, базовый набор предлагаемых возможностей, фиксированные формы представления информации. EIS-системы рисуют общую наглядную картину текущего состояния бизнес-показателей работы компании и тенденции их развития, с возможностью углубления рассматриваемой информации до уровня крупных объектов компании. EIS-системы - реальная отдача, которую видит руководство компании от внедрения технологий СППР. (Desicion Support System) - полнофункциональные системы анализа и исследования данных, рассчитанные на подготовленных пользователей, имеющих знания как в части предметной области исследования, так и в части компьютерной грамотности. Обычно для реализации DSS-систем (при наличии данных) достаточно установки и настройки специализированного ПО поставщиков решений по OLAP-системам и Data Mining.

Такое деление систем на два типа не означает, что построение СППР всегда предполагает реализацию только одного из этих типов. EIS и DSS могут функционировать параллельно, разделяя общие данные и/или сервисы, предоставляя свою функциональность как высшему руководству, так и специалистам аналитических отделов компаний.

Выводы

На сегодняшний день не существует признанного лидера в области производства программного обеспечения для построения систем СППР. Ни одна из компаний не производит готового решения, что называется «из коробки», пригодного к непосредственному использованию в производственном процессе заказчика. Создание СППР всегда включает в себя стадии анализа данных и бизнес-процессов заказчика, проектирования структур хранилища с учетом его потребностей и технологических процессов.

Учитывая размер вовлекаемых финансовых и других ресурсов, сложность и многоэтапность проектов построения систем СППР очевидна высокая стоимость ошибок проектирования. Ошибки выбора программного обеспечения могут повлечь за собой финансовые расходы, не говоря уже об увеличении времени выполнения проекта. Ошибки проектирования структуры данных могут вести как к неприемлемым производственным характеристикам, так и стоить времени, потраченного на перезагрузку данных, которое порой достигает нескольких суток. Поэтому глубоко понимая архитектуру хранилищ данных, необходимо избегать всяких ошибок, что влечет за собой значительное сокращение времени выполнения проекта и возможность получить максимальную отдачу от внедрения СППР.

Необходимо отдельно отметить, что проблемы принятия решений, а именно СППР слабо развиты в нашей стране и мало применяются на практике.

Несколько десятков различных фирм выпускают продукты, способные решать те или иные задачи, возникающие в процессе проектирования и эксплуатации систем СППР. Сюда входят СУБД, средства выгрузки/трансформации/загрузки данных, инструменты для OLAP-анализа и многое другое.


написать администратору сайта