1 Открытие днк и доква ее генетической роли
Скачать 347.71 Kb.
|
16) Молекулярная организация хромосом Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями. Как было доказано многочисленными исследованиями (см. § 3.2), ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию — программу развития клетки, организма, записанную с помощью особого кода. Количество ДНК в ядрах клеток организма данного вида постоянно и пропорционально их плоидности. В диплоидных соматических клетках организма ее вдвое больше, чем в гаметах. Увеличение числа хромосомных наборов в полипловдных клетках сопровождается пропорциональным увеличением количества ДНК в них. Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки. Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах (см. разд. 3.5.2.2). Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов. РНК хромосом представлена отчасти продуктами транскрипции, еще не покинувшими место синтеза. Некоторым фракциям свойственна регуляторная функция. Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК. Массовые соотношения ДНК: гистоны: негистоновые белки: РНК: липиды — равны 1:1:(0,2—0,5):(0,1—0,15):(0,01—-0,03). Другие компоненты встречаются в незначительном количестве. 17) Морфология метафазной хромосомы Митотическая суперкомпактизация хроматина делает возможным изучение внешнего вида хромосом с помощью световой микроскопии. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками. В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые —очень небольшие, форму которых трудно определить (рис. 3.52). При рутинных методах окраски хромосом они различаются по форме и соотносительным размерам. При использовании методик дифференциальной окраски выявляется неодинаковая флуоресценция или распределение красителя по длине хромосомы, строго специфические для каждой отдельной хромосомы и ее гомолога (рис. 3.53). Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания. 18) Сателлитные и теломерные участки хромосом Вторичная перетяжка - участок хромосомы, соединяющий спутник с телом хромосомы. В области вторичной перетяжки расположены гены рибосомных РНК, происходит синтез рРНК и происходит формирование и сборка ядрышка. Такая вторичная перетяжка поэтому называется еще ядрышковым организатором.Вторичные перетяжки могут быть у одних хромосом на длинном плече, у других - на коротком. От первичной вторичная перетяжка отличается отсутствием заметного угла между сегментами хромосомы. У человека вторичную перетяжку имеют хромосомы 9, 13, 14, 15, 21 и 22. Спутник (сателлит) - это хромосомный сегмент, чаще всего гетерохроматический, расположенный дистально от вторичной перетяжки. По классическим определениям спутник – сферическое тельце с диаметром, равным диаметру хромосомы или меньше его, которое связано с хромосомой тонкой нитью. Выделяют следующие 5 типов спутников: микроспутники– сфероидальной формы, маленькие спутники с диаметром вдвое или еще меньше диаметра хромосомы; макроспутники – довольно крупные формы спутников с диаметром, превышающим половину диаметра хромосомы; линейные - спутники, имеющие форму длинного хромосомного сегмента. Вторичная перетяжка значительно удалена от терминального конца; терминальные – спутники, локализованные на конце хромосомы; интеркалярные – спутники, локализованные между двумя вторичными перетяжками. Хромосомы, имеющие спутник, называются спутничными, их принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы. Спутник вместе с вторичной перетяжкой составляют спутничный район. Концы хромосом называются теломерами (9). Теломе?ры (от др.-греч. τ?λος- конец и μ?ρος- часть) - концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию. Термин «теломера» предложил Г. Мёллер в 1932 г. У человека ДНК теломерного участка представляет собой многократно повторяющуюся нуклеотидную последовательность 5' ТТАГГГ 3' в одной из нуклеотидных цепей ДНК. 19) Гетеро- и эухроматиновые участки хромосом, их биологическое значение Неодинаковая степень компактизации разных участков интерфазных хромосом имеет большое функциональное значение. В зависимости от состояния хроматина выделяют эухроматиновые участки хромосом, отличающиеся меньшей плотностью упаковки в неделящихся клетках и потенциально транскрибируемые, и гетерохроматиновые участки, характеризующиеся компактной организацией и генетической инертностью. В их пределах транскрипции биологической информации не происходит. Различают конститутивный (структурный) и факультативный гетерохроматин. Конститутивный гетерохроматин содержится в околоцентромерных и теломерных участках всех хромосом, а также на протяжении некоторых внутренних фрагментов отдельных хромосом (рис. 3.50). Он образован только нетранскрибируемой ДНК. Вероятно, его роль заключается в поддержании общей структуры ядра, прикреплении хроматина к ядерной оболочке, взаимном узнавании гомологичных хромосом в мейозе, разделении соседних структурных генов, участии в процессах регуляции их активности Примером факультативного гетерохроматина служит тельце полового хроматина, образуемое в норме в клетках организмов гомогаметного пола (у человека гомогаметным является женский пол) одной из двух Х-хромосом. Гены этой хромосомы не транскрибируются. Образование факультативного гетерохроматина за счет генетического материала других хромосом сопровождает процесс клеточной дифференцировки и служит механизмом выключения из активной функции групп генов, транскрипция которых не требуется в клетках данной специализации. В связи с этим рисунок хроматина ядер клеток из разных тканей и органов на гистологических препаратах различается. Примером может служить гетерохроматизация хроматина в ядрах зрелых эритроцитов птиц. Перечисленные уровни структурной организации хроматина обнаруживаются в неделящейся клетке, когда хромосомы еще недостаточно компактизованы, чтобы быть видимыми в световой микроскоп как отдельные структуры. Лишь некоторые их участки с более высокой плотностью упаковки выявляются в ядрах в виде хроматиновых глыбок (рис. 3.51). 20) Соотношение понятий хроматин и хромосома Хромосомой принято называть элемент, входящий в состав ядра клетки. Хромосома участвует в формировании структуры ядра. Это хранилище ДНК, а значит и информации наследственного типа об организме в целом. Линейный порядок расположения генов характеризует хромосомы. Хромосому формируют хроматиды. Хроматиды представлены при этом парой продольных субЪединиц. Каждая из входящих в обозначенную пару хроматид по своему строению и структуре абсолютно аналогична другой хроматиде. Основу хроматиды составляет молекула ДНК, представленная в единичном экземпляре. Теломеры выступают конечными участками хроматид. Хроматин является веществом, входящим в состав хромосомы. Его можно выделить из ядер клеток растений или животных. Для хроматина характерна способность интенсивно окрашиваться ядерными красителями. Когда клетка начинает делиться, хроматин претерпевает процесс формирования в различимые структуры определённого типа, находящиеся в составе хромосом. Общие черты хроматина и хромосомы Общность обозначенных понятий заключается в следующем: Процесс спирализации хроматина, в ходе которого и происходит конечное образование хромосомы. Кроме того, и хроматин, и хромосома являются двумя структурно-функциональными состояниями, которые несут в себе наследственный материал. Сходство химической основы хроматина и хромосомы позволяет при помощи белков осуществлять многоуровневую упаковку молекул, содержащих ДНК, в результате чего хроматин преобразуется в компактную форму. Различия на уровне структуры Хромосомы, как элементы ядра клетки, имеют следующие отличительные особенности, расходящиеся с особенностями хроматина: Способность к самовоспроизведению. Наличие индивидуальной составляющей, связанной со структурными и функциональными свойствами. Возможность сохранять индивидуальные характеристики в ряду нескольких поколений. Хроматин от хромосомы можно отличить по следующим параметрам: Является комплексом, переставленным сочетанием РНК, ДНК и белков. Представляет собой вещество хромосом. Располагается внутри клеток эукариот. Является составным фрагментом нуклеотида у прокариот. С помощью своего состава наделён способностью реализовывать генетическую информацию. 6. Реализует репликацию и репарацию ДНК. 21) Кариотип, его видовая специфичность Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом (рис. 3.67). Ниже приведены количества хромосом соматических клеток некоторых видов организмов. Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами —X и Y (XX или XY). Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,— генотип — это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи. 22) Характеристика кариотипа человека У человека нормой является наличие хромосом, количество которых равно 46. Из них 22 пары являются аутосомами и две — это половые хромосомы. У представительниц женского пола они обозначаются как ХХ, у представителей мужского пола — ХУ. Главная особенность хромосомного набора — это видовая специфичность кариотипа. Функции хромосом заключаются в том, что каждая из них является носительницей генов, которые отвечают на наследственность. Нормальный мужской кариотип — это кариотип 46, ХУ. Нормальный женский кариотип выглядит как кариотип 46, ХХ. Набор хромосом остается неизменным на протяжении всей жизни. 23) Сущность Денверской классификации хромосом человека и ее основные принципы Денверская классификация хромосом Классификация и номенклатура равномерно окрашенных хромосом человека впервые были приняты на международном совещании в 1960 году в г. Денвере, в дальнейшем несколько измененные и дополненные (Лондон, 1963 и Чикаго, 1966). Согласно Денверовской классификации все хромосомы человека разделены на 7 групп, расположенных в порядке уменьшения их длины и с учетом центриольного индекса (отношение длины короткого плеча к длине всей хромосомы, выраженное в процентах). Группы обозначаются буквами английского алфавита от А до G. Все пары хромосом принято нумеровать арабскими цифрами. Характеристика групп представлена в табл. 4. Предложенная классификация позволяла четко различать хромосомы, принадлежащие к различным группам. С 1960 года начинается бурное развитие клинической цитогенетики: в 1959 году Дж. Лежен открыл хромосомную природу синдрома Дауна; К. Форд, П. Джекобс и Дж. Стронг описали особенности кариотипа при синдромах Клайнфельтера и Тернера; в начале 70-х гг. была открыта хромосомная природа синдромов Эдвардса, Патау, синдрома «кошачьего крика»; описана хромосомная нестабильность при ряде наследственных синдромов и злокачественных заболеваниях. Вместе с тем применение метода получения равномерно окрашенных хромосом оказалось недостаточно эффективным для идентификации хромосом. Недостатком денверской классификации является то, что разграничение гомологичных пар внутри группы хромосом встречает зачастую непреодолимые трудности. Парижская классификация хромосом В настоящее время используются дифференциальные методы окрашивания метафазных хромосом с избирательным выявлением их отдельных фрагментов. Топография окрашиваемых участков по длине хромосомы зависит от локализации определенных фракций ДНК, например сателлитной, распределения участков структурного гетерохроматина и ряда других факторов. Применяют 4 основных метода дифференциальной окраски: Q, G, R и С. Все они выявляют закономерную линейную неоднородность фрагментов по длине метафазных хромосом. Характер окрашивания специфичен для каждой негомологичной хромосомы, что дает их точную идентификацию . Постоянство локализации окрашиваемых фрагментов позволяет составить «химические» карты хромосом. Сопоставление этих карт с генетическими используется для расшифровки функционально-генетических особенностей различных районов хромосом. На основе избирательной окраски в 1971 году в Париже были разработаны карты линейной дифференцированности хромосом человека и предложена система их обозначения. Латинскими буквами р и q обозначаются соответственно короткое и длинное плечо хромосомы. От центромеры к теломере по имеющимся отчетливым морфологическим указателям (маркерам) в каждом плече выделяют районы, обозначаемые арабскими цифрами. В пределах районов идентифицируют сегменты — регулярные участки, отличающиеся по интенсификации окраски. Они также обозначаются арабскими цифрами. Так, символ 1р22 означает 2-й сегмент 2-го района короткого плеча хромосомы 1. Так для Х-хромосомы человека известны 96 локусов, некоторые из которых картированы. Имеются «пучки» сцепленных генов, концентрирующихся вокруг локусов цветовой слепоты, группы крови Xq и др. 24) Особенности организации генома эукариот Геном эукариот устроен намного сложнее, чем у прокариот. Генетический аппарат эукариотической клетки обособлен в виде клеточного ядра, внутри которого располагаются основные носители наследственности — хромосомы. Количество хромосом видоспецифично и колеблется от двух (лошадиная аскарида) до тысячи (низшие растения). Количество ДНК в клетках эукариот намного выше, чем у бактерий. Оно оценивается с помощью величины С — количества ДНК на гаплоидное число хромосом, т.е. на геном. Оно колеблется у разных видов от 104 до 1011 и часто не коррелирует с уровнем организации вида. Самые большие значения величины С, превышающие содержание ДНК в геноме человека, характерны для некоторых рыб, хвостатых амфибий, лилейных. Одной из |