Гамма реферат. 1. Открытие гаммаизлучения
Скачать 67.37 Kb.
|
1 2 4. Виды излучения и их влияние Мы знаем, что атомы вещества состоят из ядра и вращающихся вокруг него электронов. Так вот ядро – это в принципе очень устойчивое образование, которое сложно разрушить. Однако, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство различную энергию и частицы. Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, различно и их действие на человека и меры защиты от него. Альфа-излучение — это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным. Бета-излучение — это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани. Гамма-излучение — это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения. Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно. В любом случае без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом. Поэтому общее правило одно – избегать подобных мест, а если уж попали, то укутаться как можно большим количеством одежды и вещей, дышать через ткань, не есть и не пить, и постараться поскорее покинуть место заражения. А потом при первой же возможности избавиться от всех этих вещей и хорошенько вымыться. Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги. Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток. Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения. Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям. При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы. Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением. Бета излучение с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение. Если альфа излучение представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации. Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения. Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку. Гамма излучение сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света. Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение. Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения. Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10-10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц - гамма-квантов или фотонов, с энергиями Е=hν. Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Частота гамма-излучения (> 3Й1018 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частица-античастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов. Вспышки гамма-излучения самые сильные и мощные во Вселенной. Они были впервые зарегистрированы в 60-ых годах прошлого века американскими военными, которые ошибочно их приняли за ядерные взрывы советских атомных бомб. С тех пор ученые обнаружили, что они исходят из дальнего космоса – в миллиардах световых лет от нас. Но что было причиной их возникновения оставалось тайной. Ученые выяснили, что вспышки гамма-излучения возникают в двух моментах на определенных стадиях. Сначала происходит очень короткий и сильный взрыв, который сопровождается потоками гамма-излучения. Его практически невозможно засечь, поскольку нужно знать где произойдет вспышка в определенный момент времени. Затем возникает более энергичная по длительности вспышка на несколько дней, которая сопровождается 'послесвечением' с излучением оптических и радиоволн. Эти последствия коллапса новой звезды фактически составляют только 1% полной энергии от первой вспышки гамма-излучения. Если рассматривать сумму излученной энергии близлежащих вспышек гамма-излучения, включая потоки радио- и световых волн, то они эквивалентны энергии потоков гамма-излучения, приходящих из далекого космоса. 5. Применение гамма-излучения Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др. Образование пар – очередное уникальное свойство гамма-лучей. В результате определенной реакции, квант, расположенный в самом центре ядра, становится и электроном, и позитроном. А вот благодаря ядерному эффекту такого излучения гамма-квант способен выбивать из ядра нуклоны. Гамма-излучение в современном мире применяется в самых разных областях жизни человечества. Гамма-дефектоскопия, например, позволяет контролировать работу многих аппаратов и изделий при помощи специальных лучей. Консервирование многих продуктов также происходит с использованием подобных лучей. При этом срок годности заготовок значительно увеличивается, а о каких-либо вредных последствиях и вовсе не может быть и речи. Комптон-эффект – еще одно свойство гамма-излучения, которое также заслуживает особого изучения. В данном случае отмечается увеличение электромагнитной волны. Это явление было открыто в далеком 1923 году. С использованием гамма-излучения проводятся процессы стерилизации оборудования, медицинских инструментов, некоторых продуктов питания. В медицине такие лучи также нашли область своего применения. При помощи лучевой терапии, например, лечится огромное количество разновидностей злокачественных опухолей. Согласитесь, это немаловажный вклад в развитии медицины, так как это удается далеко не каждому лекарственному препарату. При использовании гамма-лучей мы наблюдаем достаточно неплохие результаты в лечении онкологических заболеваний и к тому же при относительно небольших затратах. Да и вообще, гамма-лучи благодаря своим специфическим свойствам смогли существенно продвинуть медицину вперед. Гамма-каротаж является неотъемлемой частью геологии. Используя различные источники гамма-излучения, геологи измеряют глубину скважин. А вот гамма-высотомер – это способ точно определить расстояние, преодолеваемое космическими аппаратами. То есть данные излучения нашли активное применение и в космонавтике, и в геологии, и в медицине, и на производстве. Но при всех этих положительных моментах гамма-излучение имеет и некоторые недостатки, о которых необходимо обязательно знать. Из-за продолжительного контакта с квантами, например, возникает опасное заболевание – лучевая болезнь. Самым серьезным последствием такого облучения являются различные виды онкологических болезней. Кроме того, данные лучи обладают еще и тератогенным воздействием на организм, в результате которого происходят мутация и эмбриональное нарушение нормального развития. По сути, гамма-излучение – это та же самая радиация, о которой мы много слышали, но о которой мало знаем. Хотя при правильном использовании в небольших дозах с использованием современного оборудования данные излучения способны существенно облегчить и улучшить жизнедеятельность человека! Гамма-излучение применяют в медицине для лечения опухолей (Гамма терапия, Лучевая терапия), а также для стерилизации помещений, аппаратуры и лекарственных препаратов. В качестве источников гамма-излучения используют гамма-излучатели — естественные и искусственные радиоактивные изотопы в процессе распада которых испускаются гамма-кванты. Гамма-излучатели применяют для изготовления источников гамма-излучения различной интенсивности и конфигурации. По своей природе гамма-лучи сходны с рентгеновскими, инфракрасными и ультрафиолетовыми лучами, а также с видимым светом и радиоволнами. Эти виды электромагнитного излучения отличаются только условиями образования. Например, в результате торможения быстро летящих заряженных частиц (электронов, альфа-частиц или протонов) возникает тормозное излучение при различных переходах атомов и молекул из возбужденного состояния в невозбужденное происходит испускание видимого света, инфракрасного, ультрафиолетового или характеристического рентгеновского излучения. Гамма-излучение действует на живые клетки подобно другим видам ионизирующих излучений. Хотя биосфера подвергается постоянному воздействию гамма-излучения в составе космических лучей и излучений радиоактивных элементов, находящихся в рассеянном виде в почвах, атмосфере и воде (радиационный фон Земли), их интенсивность невелика, и они не представляют опасности для живых организмов. Действие гамма-излучения проявляется по мере накопления вторичных электронов в объекте облучения и их переноса в близлежащие структуры. Тотальное гамма-нейтронное облучение организмов, сопровождающее ядерные взрывы, в зависимости от дозы может приводить к гибели организмов (для человека смертельная доза - 100 Гр), развитию лучевой болезни (при дозах 5-10 Гр). Воздействие более низких доз опасно отдалёнными последствиями: злокачественным перерождением клеток, развитием лейкозов, рождением генетически неполноценного потомства и др. Гамма-излучение применяют в медицине при лечении онкологических заболеваний (гамма-терапия; смотри Лучевая терапия). Оно используется также в генетических исследованиях для получения мутаций в молекулах ДНК и селекции организмов с последующим отбором хозяйственно полезных форм. С помощью γ-лучей был выведен новый штамм грибка, уничтожающий насекомых-вредителей урожая. Препарат «Боверин» на его основе спас огромное количество зерна, овощей, фруктов. Стимулирующее действие γ- лучей применяют для увеличения и ранней всхожести многих культур, в том числе и в гидропонике. Облучением культур дрожжей выведены новые формы, отличающиеся большим производством эргостерина, применяемого в производстве витаминов. Использование γ- излучения в микробиологической промышленности способствовало выведению новых штаммов плесневых грибков, которые синтезируют пенициллин, ауреомицин, стрептомицин и другие виды антибиотиков. Под действием γ- лучей изменяется вирулентность патогенных микроорганизмов, что используется при выработке вакцин. Ионизирующие свойства γ-лучей используются для увеличения срока хранения многих продуктов – овощей, фруктов, зерна, молочной продукции, рыбы, икры. В медицине применяют для стерилизации оборудования и материалов, не подлежащих другим способам обеззараживания. Лучевая терапия злокачественных заболеваний давно и прочно завоевала лидирующие позиции среди современных методов лечения раковых больных. γ-излучение используют в создании различных измерительных приборов – уровнемеров, высотомеров. С его помощью в геофизике выполняют γ-каротаж. Все свойства γ-лучей, с таким успехом применяемые в промышленности, оказывают повреждающее влияние на живые клетки. Опыты по радиостимуляции животных дали положительные результаты по привесу, скорости роста, приплоду, но сократили продолжительность жизни. γ-излучение в небольшой дозе стимулирует синтез нуклеиновых кислот, белков, ферментов, гормонов, повышает проницаемость мембран клеток, ускоряется метаболизм. Но пусковым механизмом всех положительных процессов является угнетение некоторых генов. Под влиянием триггер-эффекторов происходит активизация или угнетение хромосом. Для организма эти вещества являются токсинами. Поглощенные тканями организма γ-лучи вызывают образование свободных радикалов, способствуя усилению первичных окислительных процессов. Отрицательные радикалы, образуемые в липидах и белках клеточных мембран, не только изменяют проницаемость цитомембраны, но и влияют на активность мембранных ферментов. Хорошо известные гормоны роста, например, в больших количествах действуют на организм как токсины. Кроме того, триггер-эффекторы вызывают усиленное деление клетки, что при нарушении ее структуры и ДНК приводит к раковым опухолям. γ-облучение провоцирует активность ферментов из класса оксидоредуктаз, которые участвуют в гидролизе запасенных организмом веществ, что приводит к истощению. В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру. При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне. Часть вещества при аккреции может выбрасываться в виде струй вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше. Если гамма-всплеск произойдет в пределах нашей галактики, то это может привести к довольно значительным проблемам, даже если он произойдет в на достаточно значительном расстоянии от Земли. Хотя гамма-лучи довольно плохо проникают сквозь земную атмосферу и не могут сжечь почву, они могут повредить саму атмосферу, уничтожив озоновый слой, который предохраняет планету от смертельных ультрафиолетовых лучей, тем самым вызвав массовое вымирание. Также вполне вероятно, что гамма-всплески могут излучать космические лучи, представляющие из себя частицы высокой энергии, которые могут создать эффект, напоминающий ядерный взрыв, на той стороне Земли, которая будет обращена к взрыву. Гамма-всплески традиционно разделяются на два вида – длинные и короткие – в зависимости от того длились они больше или меньше 2 секунд. Длинные гамма-взрывы связаны со смертью колоссальных звезд, в то время как короткие гамма-всплески, скорее всего, вызваны столкновением нейтронных звезд. По большей части, длинные гамма-взрывы происходят в галактиках сильно отличающихся от Млечного Пути, например, в карликовых галактиках с низким содержанием любого элемента который был бы тяжелее гелия и водорода. Ученые вычислили, то вероятность вымирания на Земле в итоге длинного гамма-всплеска составляет 50 процентов в течении последних пятиста миллионов лет, 60 процентов в течении одного миллиарда лет и почти 95 процентов в течение последних пяти миллиардов лет. К примеру, солнечная система существует примерно 4,5 миллиарда лет. Короткие гамма-взрывы происходят приблизительно в пять раз чаще, чем длинные. Однако, эти короткие всплески намного слабее, и представляют незначительную угрозу для жизни на Земле. Ученые также обнаружили, что гамма-всплески происходящие за пределами нашей галактики, вероятно, не имеют абсолютно никакой угрозы для Земли. Эти данные свидетельствуют в пользу того, что произошедший недалеко от нашей планеты гамма-всплеск мог явиться причиной одного из пяти крупнейших массовых вымираний случившихся на Земле, например вымирание, которое произошло 440 миллионов лет назад и являлось вторым по величине за всю историю земли. Исследователи также изучили опасность гамма-всплесков для всей Вселенной в целом. Они предполагают, что из-за гамма-взрывов, жизнь, подобная земной, могла возникнуть лишь в каждой десятой галактике. К тому же формирование жизни было возможно только в последние пять миллиардов лет. До этого времени, галактики были не такие крупные, и гамма-всплески всегда происходили на достаточно близком расстоянии, тем самым вызывая массовые вымирания на любых потенциально благоприятных для жизни планетах. Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час. Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения. У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены. Заключение Гамма-излучение (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится к ионизирующими излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков. Гамма-излучение может испускаться атомными ядрами и элементарными частицами, а также в результате ядерных реакций и реакций между частицами, в частности аннигиляции пар частица - античастица. Гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров гамма-излучения, возникающего в процессах взаимодействия частиц, и гамма-излучения ядер даёт информацию о структуре этих микрообъектов. Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными лазерными пучками. При этом электрон передаёт свою энергию оптическому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд. Однако стоит отметить, гамма-излучение и его источники являются чрезвычайно опасными для человеческого организма, однако даже для него нашлось применение в некоторых сферах жизни. Список использованной литературы: 1. Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. 3-е изд., перераб. и доп. М., Энергоатомиздат, 1985; 2. Альфа-, бетаи гамма-спектроскопия, пер. с англ., под ред. К. Зигбана, в, 1, М., 1969; 3. Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 1, М., 1955. 1 2 |