Электроника. 1. Полупроводники. Основные положения теории электропроводимости. Собственная и примесная проводимость полупроводника
Скачать 1.1 Mb.
|
4.Емкость p-n переходаДиод обладает емкостными свойствами, т.е. способен накапливать и отдавать заряд при увеличении или уменьшении приложенного напряжения. Накопление заряда происходит в p-n-переходе и в базе диода, и в соответствие с этим различают две составляющие емкости – барьерную и диффузионную:CД=Cбар+Cдф Барьерная (зарядная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. Поэтому идеальный электронно-дырочный переход можно рассматривать как плоский конденсатор, емкость которого определяется соотношением: где S, l(U) – соответственно площадь и толщина p-n-перехода. Емкость, обусловленная неподвижными зарядами ионов доноров и акцепторов, создающих в p-n-переходе как бы плоскостной конденсатор, носит название барьерной, или зарядной. Она тем больше, чем больше площадь p-n-перехода и меньше его ширина. Ширина p-n-перехода зависит от величины и полярности приложенного напряжения. При прямом напряжении она меньше, следовательно, барьерная емкость возрастает. При обратном напряжении барьерная емкость уменьшается тем сильнее, чем больше Uобр. Это используется в полупроводниковых приборах (варикапах), служащих конденсаторами переменной емкости, величина которой управляется напряжением. Барьерная емкость в зависимости от площади p-n-перехода составляет десятки и сотни пикофарад. Её вольт-фарадная характеристика представлена на рис. 2.7, а. Емкость, обусловленная объемными зарядами инжектированных электронов и дырок по обе стороны от p-n-перехода, где их концентрация в результате диффузии через p-n-переход велика, носит название диффузионной. Она проявляется при прямом напряжении, когда происходит инжекция носителей заряда, и значительно превышает по величине барьерную емкость, составляя в зависимости от величины прямого тока сотни и тысячи пикофарад. При обратном напряжении она практически отсутствует. Её вольт-фарадная характеристика представлена на рис. 2.7, б. Рис. 2.7. Зависимость барьерной (а) и диффузионной (б) емкостей p-n перехода от напряжения Таким образом, при прямом напряжении следует учитывать диффузионную емкость, а при обратном – барьерную. 5 Полупроводниковые диоды. Принцип работы , графическое обозначение. Основные характеристики и параметры .Полупроводниковым диодом называют прибор с одним или несколькими электрическими переходами и двумя выводами для подключения к внешней цепи. Принцип действия большинства диодов основан на использовании физических явлений в электрических переходах. Диоды классифицируются: по материалу (селеновые, германиевые, кремниевые, арсенид-галлиевые); структуре перехода (точечные, плоскостные) ; назначению (выпрямительные, импульсные, стабилитроны и т.д.) ; диапазону частот (низкочастотные, высокочастотные, сверхвысокочастотные диоды (СВЧ-диоды)); виду вольт-амперной характеристики и т.д. Основные характеристики и параметры диодов Вольт-амперная характеристика Максимально допустимое постоянное обратное напряжение Максимально допустимое импульсное обратное напряжение Максимально допустимый постоянный прямой ток Максимально допустимый импульсный прямой ток Номинальный постоянный прямой ток Прямое постоянное напряжение на диоде при номинальном токе (т. н. «падение напряжения») Постоянный обратный ток, указывается при максимально допустимом обратном напряжении Диапазон рабочих частот Ёмкость Пробивное напряжение (для защитных диодов и стабилитронов) Тепловое сопротивление корпуса при различных вариантах монтажа Максимально допустимая мощность рассеивания У словные графические обозначения полупроводниковых диодов на схемах электрических принципиальных представлены на рис. 3.5. Выводы диода называются катод и анод. Катод – вывод прибора, через который ток вытекает во внешнюю цепь. Анод – вывод прибора, через который ток втекает в прибор из внешней цепи. В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт. Диод закрыт При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт. Диод открыт Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа. Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока. |