Электроника. 1. Полупроводники. Основные положения теории электропроводимости. Собственная и примесная проводимость полупроводника
Скачать 1.1 Mb.
|
8.Стабилитроны. Принцип работы , графическое обозначение . Основные характеристики и параметры.П олупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя]. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов. Основное назначение стабилитронов — стабилизация напряжения. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В]. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений. Принцип действия В ольт-амперные характеристики стабилитронов с преобладанием лавинного (слева) и туннельного (справа) механизмов пробоя[19] Полупроводниковый стабилитрон — это диод, предназначенный для работы в режиме пробоя на обратной ветви вольт-амперной характеристики. В диоде, к которому приложено обратное, или запирающее, напряжение, возможны три механизма пробоя: туннельный пробой, лавинный пробой и пробой вследствие тепловой неустойчивости — разрушительного саморазогрева токами утечки. Тепловой пробой наблюдается в выпрямительных диодах, особенно германиевых, а для кремниевых стабилитронов он не критичен. Стабилитроны проектируются и изготавливаются таким образом, что либо туннельный, либо лавинный пробой, либо оба эти явления вместе возникают задолго до того, как в кристалле диода возникнут предпосылки к тепловому пробою. Предложенный Зенером туннельный механизм действует только при напряжениях пробоя до примерно 5,5 В, а при бо́льших напряжениях преобладает лавинный механизм. Напряжение пробоя стабилитрона определяется концентрациями акцепторов и доноров и профилем легирования области p-n-перехода. Чем выше концентрации примесей и чем больше их градиент в переходе, тем больше напряжённость электрического поля в области пространственного заряда при равном обратном напряжении, и тем меньше обратное напряжение, при котором возникает пробой: Туннельный, или зенеровский, пробой возникает в полупроводнике только тогда, когда напряжённость электрического поля в p-n-переходе достигает уровня в 106 В/см. Такие уровни напряжённости возможны только в высоколегированных диодах (структурах p+-n+-типа проводимости) с напряжением пробоя не более шестикратной ширины запрещённой зоны (6 EG ≈ 6,7 В), при этом в диапазоне от 4 EG до 6 EG (4,5…6,7 В) туннельный пробой сосуществует с лавинным, а при напряжении пробоя менее 4 EG (≈4,5 В) полностью вытесняет его. С ростом температуры перехода ширина запрещённой зоны, а вместе с ней и напряжение пробоя, уменьшается: низковольтные стабилитроны с преобладанием туннельного пробоя имеют отрицательный температурный коэффициент напряжения (ТКН)[24]. В диодах с меньшими уровнями легирования, или меньшими градиентами легирующих примесей, и, как следствие, бо́льшими напряжениями пробоя наблюдается лавинный механизм пробоя. Он возникает при концентрациях примесей, примерно соответствующих напряжению пробоя в 4 EG (≈4,5 В), а при напряжениях пробоя выше 4 EG (≈7,2 В) полностью вытесняет туннельный механизм. Напряжение, при котором возникает лавинный пробой, с ростом температуры возрастает, а наибольшая величина ТКН пробоя наблюдается в низколегированных, относительно высоковольтных, переходах[25]. Оптимальная совокупность характеристик стабилитрона достигается в середине «серой зоны», при напряжении стабилизации около 6 В. Дело не столько в том, что благодаря взаимной компенсации ТКН туннельного и лавинного механизмов эти стабилитроны относительно термостабильны, а в том, что они имеют наименьший технологический разброс напряжения стабилизации и наименьшее, при прочих равных условиях, дифференциальное сопротивление]. Наихудшая совокупность характеристик — высокий уровень шума, большой разброс напряжений стабилизации, высокое дифференциальное сопротивление — свойственна низковольтным стабилитронам на 3,3—4,7 В. Основные параметры стабилитрона напряжение стабилизации Uст. Напряжение, которое устанавливается на выводах стабилитрона при протекании через него обратного тока в пределахIст min...Iст max, называется напряжением стабилизации. Напряжение стабилизацииUстнезначительно зависит от токаIст. Напряжение стабилизации связано с напряжением пробоя, но не равно ему, так как ВАХ имеет определенную крутизну. В общем случае Uстопределяется шириной запирающего слояp-n-перехода, то есть концентрацией примесей в полупроводнике. В случае большой концентрации примесиp-n-переход получается тонким, и в нем даже при малых напряжениях возникает электрическое поле, вызывающее туннельный пробой. При малой концентрации примесиp-n-переход имеет значительную ширину, и лавинный пробой наступает раньше. Иногда помимо напряжения стабилизации нормируется разброс величины напряжения стабилизации ΔUст ном, представляющий собой максимально допустимое отклонение напряжения стабилизации от номинального для стабилитронов одного типа. минимально допустимый ток стабилизации Iст min. При малых обратных токах стабилитрон работает на начальном участке вольтамперной характеристики, где значение обратного напряжения неустойчиво и может колебаться в пределах от 0 до Uст. Величина минимально допустимого тока стабилизацииIст minзадает минимальный ток, при котором гарантируется вводp-n-перехода стабилитрона в режим устойчивого пробоя и, как следствие, стабильное значение напряжения стабилизацииUст. максимально допустимый ток стабилизации Iст max. Максимально допустимый ток стабилизации – это максимальный ток, при котором гарантируется надежная работа стабилитрона. Он определяется максимально допустимой рассеиваемой мощностью прибора. Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимого значения Iст maxво избежание теплового пробоя полупроводниковой структуры и выхода стабилитрона из строя. н оминальный ток стабилизации: . (7) номинальное напряжение стабилизации Uст ном– падение напряжения на стабилитроне в области стабилизации при номинальном значении токаIст ном. д инамическое (дифференциальное) сопротивление – отношение приращения напряжения стабилизации к вызвавшему его малому приращению тока: Ч ем меньше rд, тем лучше стабилизация напряжения. статическое сопротивление стабилитрона Rств данной рабочей точке характеризует омические потери: коэффициент качества стабилитрона: Коэффициент качества представляет собой отношение относительного изменения напряжения на стабилитроне к относительному изменению тока. Качество стабилитрона тем выше, чем меньше Q. температурный коэффициент напряжения стабилизации. Температурный коэффициент напряжения стабилизации αUстпоказывает, на сколько процентов изменится относительное изменение напряжения стабилизации при изменении температуры окружающей среды на 1°C и постоянном токе стабилизации: ,[%/°С]. (11) В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает из-за уменьшения ширины запрещённой зоны. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, то есть они имеют отрицательный температурный коэффициент напряжения стабилизации ТКН. В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей вследствие возрастания рассеяния на фононах решётки, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН. Минимальный ТКН имеют кремниевые стабилитроны с напряжением пробоя 5-7 В, когда туннельный и лавинный пробои развиваются одновременно. |