лаба 12. 1. Понятие компенсация реактивной мощности. Назначение компенсации реактивной мощности
Скачать 18.18 Kb.
|
1. Понятие «компенсация реактивной мощности». Назначение компенсации реактивной мощности 2. Оборудование и средства для решения проблем компенсации реактивной мощности 3. Выбор мощности и места размещения компенсационных установок 1. Понятие «компенсация реактивной мощности». Назначение компенсации реактивной мощности Компенсация реактивной мощности – целенаправленное воздействие на баланс активной и реактивной мощности в электрической системе с целью регулирования напряжения, а в распределительных сетях — и с целью снижения потерь электроэнергии. Компенсация (поддержание баланса активной и реактивной мощности) осуществляется при помощи компенсирующих устройств (КУ). В настоящее время основной нагрузкой электрических сетей являются АД, распределительные и преобразовательные трансформаторы, полупроводниковые преобразовательные аппараты. Для таких ЭП требуется большой реактивный ток, который необходим для создание электромагнитных полей. Реактивный ток, совершая колебания между источником и ЭП, приводит к дополнительной загрузке оборудования и линий электропередачи на всех этапах производства, передачи и распределения электроэнергии. Нарушение баланса активной и реактивной мощности приводит к колебаниям напряжения и частоты в узлах нагрузки. Активная электрическая энергия идет на работу, превращаясь в механическую, световую и другие виды энергии, а также идет на покрытие потерь. Активная мощность вырабатывается только генераторами электрических станций. Реактивная составляющая энергии не выполняет полезной работы, она служит для создания магнитных полей, необходимых для работы ЭП. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Передача реактивной мощности от генераторов по электрической сети к потребителям (индуктивным ЭП) уменьшает активную мощность сети (cosφ сети) и дополнительно загружает электросеть, снижает ее общую пропускную способность. Суммарная реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций, реактивной мощности ВЛЭП (конденсаторный эффект, мощность пропорциональна длине линий электропередачи и квадрату напряжения) и реактивной мощности КУ, подключенных к электрической сети. Реактивная мощность также может регулироваться синхронными двигателями (СД) станций и ПП в режиме переили недовозбуждения, а также батареями конденсаторов (БК). Наиболее целесообразно использование реактивной мощности от заводских источников: КБ, КУ и СД, – т.к. они расположены в непосредственной близости к потребителям (АД и т.д.). Это позволит сократить число и сечение передающих линий, число устанавливаемых трансформаторов и другие сетевые затраты, связанные с передачей реактивной мощности. Для обеспечения энергосбережения используют различные средства компенсации реактивной мощности, устанавливаемые непосредственно возле ЭП, потому что реактивная мощность, как и активная, учитывается в тарифе за электроэнергию: за ее потребление платит предприятие, а в случае превышения потребления активной мощности Облэнерго налагает штрафы. Следует, однако, отметить, что из-за избытка реактивной мощности в электрических сетях за ее недоиспользование налагают большие штрафы, в то время как за превышение ее потребления возможно даже премирование. Для стимулирования мероприятий по компенсации реактивной мощности на предприятиях установлены скидки и надбавки к тарифу на электроэнергию. Баланс реактивной мощности должен обеспечиваться при всех режимах работы СЭС: номинальном, послеаварийном и послеремонтном. Обеспечивать баланс реактивной мощности настолько важно, что в послеаварийных и послеремонтных режимах используют все существующие на предприятии средства генерации или потребления реактивной мощности, независимо от их экономичности. В распределительных сетях коммунально-бытовых потребителей, содержащих преимущественно однофазную нагрузку, устройства компенсации реактивной мощности применяются редко. Но в настоящее время расход электроэнергии в жилом секторе непрерывно увеличивается. Так, в 70-тые годы ХХ-го века бытовое потребление (практически только активной энергии) составляло 4–5 % от общей выработки электроэнергии; в настоящее время этот показатель оценивается в 35–40 %. Поэтому рассмотрение устройств компенсации у бытовых абонентов становится актуальной темой. Отсутствие компенсации реактивной мощности приводит к следующим отрицательным результатам: уменьшается cosφ всех элементов, входящих в энергосистему; при уменьшении cosφ трансформаторов уменьшается пропускная способность активной мощности из-за увеличения реактивной загрузки; увеличение потребления мощности в сетях с низким cosφ приводит к возрастанию тока и, следовательно, к возрастанию потерь мощности пропорционально току в квадрате, к увеличению падения напряжения во всех звеньях энергосистемы, к снижению напряжения у потребителей; на ПП снижение напряжения нарушает нормальную работу ЭП. Снижается частота вращения ЭД, что приводит к снижению производительности оборудования; ухудшается качество сварки; снижается световой поток ламп; ухудшается качество продукции; при росте тока требуется увеличение сечений проводов и кабелей, возрастают капитальные затраты. Компенсация реактивной мощности особенно актуальна для ПП, основными ЭП которых являются АД, у которых cosφ, без принятия мер по компенсации, будет не более 0,6÷0,65. В результате можно сказать, что выполнение на предприятии мероприятий по компенсации реактивной мощности позволит: уменьшить нагрузку на трансформаторы или выбирать трансформаторы меньшей мощности, увеличить срок их службы; использовать провода и кабели меньшего сечения; улучшить качество электроэнергии и уменьшить ее потребление; уменьшить нагрузку на коммутационную и защитную аппаратуру за счет уменьшения рабочих токов. На баланс активной и реактивной мощности существенное влияние оказывают нагрузки с нелинейными вольтамперными характеристиками. Их использование сопровождается искажениями напряжения питающей сети, что негативно влияет на ЭО и вызывает: повышенный нагрев аппаратуры и токопроводящих линий, увеличение потерь мощности; избыточную вибрацию и нестабильность работы двигателей; ложные срабатывания устройств релейной защиты и автоматики, несанкционированное срабатывание коммутационной аппаратуры, возникновение резонансных явлений; электромагнитные помехи в измерительной аппаратуре и в устройствах управления. 2. Оборудование и средства для решения проблем компенсации реактивной мощности Компенсировать реактивную мощность можно КУ высокого, среднего и низкого напряжений на основе контакторов и тиристорных устройств. Они выполняются в различном климатическом исполнении и комплектуются фильтрокомпенсирующими установками (ФКУ); батареями статических конденсаторов (БСК); низковольтными и высоковольтными одно- и трехфазными конденсаторами, СД и синхронными компенсаторами (СК), косинусными компенсаторами (конденсаторными установками), шунтирующими реакторами, статическими тиристорными компенсаторами. Различают поперечную и продольную компенсацию реактивной мощности. При поперечной компенсации индуктивные и емкостные цепи КУ соединяются параллельно. При этом ток в неразветвленной части цепи равен геометрической сумме индуктивных и емкостных токов: индуктивный ток отстает от напряжения, а емкостный опережает его. При соответствующем значении емкости суммарный ток оказывается больше индуктивного тока нагрузки, что приводит к увеличению коэффициента мощности (cosφ) системы. Повышение cosφ системы с помощью источников реактивной мощности позволяет увеличить пропускную способность линий, повысить активную загрузку трансформаторов без увеличения их мощности. При поперечной компенсации реактивной мощности при снижении тока нагрузки снижаются потери активной мощности, повышается напряжение в сети, снижаются потери в отдельных элементах СЭС. Для уменьшения потерь в питающей сети конденсаторы следует подключать как можно ближе к потребителям. К преимуществам поперечной компенсации относятся: простота и невысокая стоимость, доступность используемых материалов, малые собственные потери активной мощности, а к недостаткам – отсутствие плавного регулирования отдаваемой в сеть реактивной мощности, пожароопасность, наличие остаточного заряда. При продольной компенсации конденсаторы включают последовательно с нагрузкой через разделительный или вольто-добавочный трансформатор, через которые проходит полный ток линии, в том числе и ток КЗ. Продольная компенсация обеспечивает автоматическое регулирование напряжения в зависимости от тока нагрузки. Выбор оборудования для компенсации реактивной мощности полностью зависит от места и цели его установки. Конденсаторные батареи (КБ) являются основным средством компенсации (выдача реактивной энергии) на ПП. Снижение перетоков реактивной мощности от генераторов через электросеть к ЭП уменьшает потери активной энергии и нормализует напряжение в энергосистеме. КБ устанавливаются вблизи от места потребления реактивной мощности, и при необходимости устанавливаются системы автоматического регулирования для изменения выдаваемой мощности в разных режимах. В качестве примера можно указать применение КБ на заводах электролиза алюминия, в схемах крупных ртутно — выпрямительных агрегатов, в цехах с большим количеством АД. При периодическом заряде и разряде конденсаторы создают избыточное напряжение, что заставляет ток переходить в следующую фазу раньше, чем это было бы при отсутствии в схеме конденсаторов, в результате чего КБ генерируют реактивную мощность. Поэтому выдаваемая в систему мощность при наличии в системе КБ (QП) оказывается больше, чем паспортное значение установленной мощности батарей (Qконд). Шунтирующие реакторы используются для компенсации (снижения) емкостной мощности, генерируемой протяженными слабонагруженными высоковольтными ВЛЭП. |