Главная страница
Навигация по странице:

  • Вулканогенные и вулканогенно-осадочные коллекторы нефти и газа

  • Глинисто-кремнисто-битуминозные породы

  • 10. Описать одномерные потоки фильтрации (плоскопараллельный, плоскорадиальный, радиально-сферический). ОДНОМЕРНЫЙ ПОТОК

  • Прямолинейно-параллельный поток

  • Радиально-сферический поток.

  • 11. Капиллярные явления в пористых средах. Капиллярное давление в сужающихся и расширяющихся капиллярах. Капиллярная пропитка.

  • 12. Тепловые свойства горных пород.

  • Удельная (массовая) теплоёмкость

  • Коэффициент теплопроводности

  • Коэффициент температуропроводности

  • 13. Упругие изменения свойств коллекторов в процессе разработки нефтяных и газовых месторождений.

  • госы. 1. Приток нефти к совершенной и несовершенной скважинам в однородном изотропном пласте. Виды несовершенства скважин. Изотропный пласт


    Скачать 0.63 Mb.
    Название1. Приток нефти к совершенной и несовершенной скважинам в однородном изотропном пласте. Виды несовершенства скважин. Изотропный пласт
    Дата06.08.2022
    Размер0.63 Mb.
    Формат файлаdocx
    Имя файла1_modul.docx
    ТипДокументы
    #641416
    страница2 из 4
    1   2   3   4

    9. Основные типы пород-коллекторов нефти и газа.

    КОЛЛЕКТОРЫ НЕФТИ И ГАЗА - горные породы, способные вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки месторождений.

    Критериями принадлежности пород к коллекторам нефти и газа служат величины проницаемости и ёмкости, обусловленные развитием пористости, трещиноватости, кавернозности. Величина полезной для нефти и газа ёмкости зависит от содержания остаточной водонефтенасыщенности.

    Долевое участие пор, каверн и трещин в фильтрации и ёмкости определяет тип коллектора нефти и газа: поровый, трещинный смешанный, кавернозные, биопустанные, смешанные.

    Коллекторами являются породы различного вещественного состава и генезиса: терригенные, карбонатные, глинисто-кремнисто-битуминозные, вулканогенно-осадочные и другие.

    Коллекторские свойства терригенных пород зависят от гранулометрического состава, сортированности, окатанности и упаковки обломочных зёрен скелета, количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам порового типа коллекторов.

    Минеральный состав глинистой примеси, характер распределения и количество её влияют на фильтрационную способность терригенных пород; увеличение глинистости сопровождается снижением проницаемости.

    Коллекторские свойства карбонатных пород определяются первичными условиями седиментации, интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются поры, каверны, трещины и крупные полости выщелачивания.

    Особенности карбонатных пород — ранняя литификация, избирательная растворимость и выщелачивание, склонность к трещинообразованию обусловили большое разнообразие морфологии и генезиса пустот; они проявились в развитии широкого спектра типов коллекторов нефти и газа.

    Наиболее значительные запасы углеводородов сосредоточены в каверново-поровом и поровом типах.

    Вулканогенные и вулканогенно-осадочные коллекторы нефти и газа отличаются характером пустотного пространства, большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Особенность коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах. Наиболее часто встречаются трещинный и порово-трещинный типы коллекторов.

    Глинисто-кремнисто-битуминозные породы отличаются значительной изменчивостью состава, неодинаковой обогащённостью органическим веществом; микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационноёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли миллидарси. Преобладают трещинные и порово-трещинные коллекторы нефти и газа. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах. Наиболее значительные запасы углеводородов приурочены к песчаным и карбонатным рифогенным образованиям. Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом всей геологической информации по месторождению.
    10. Описать одномерные потоки фильтрации (плоскопараллельный, плоскорадиальный, радиально-сферический).
    ОДНОМЕРНЫЙ ПОТОК – поток жидкости или газа в пористой среде, при котором совокупность всех траекторий состоит из параллельных прямых линий, причем в каждом плоском сечении, перпендикулярном к направлению движения, скорости фильтрации во всех точках этого сечения не только параллельны, но и равны друг другу.

    Прямолинейно-параллельный поток. Траектории всех частиц жидкости - параллельные прямые, а скорости фильтрации во всех точках любого поперечного (перпендикулярного к линиям тока) сечения потока равны между собой, поверхности равных потенциалов (эквипотенциальные поверхности) и поверхности равных скоростей (изотахи) являются плоскими поверхностями, перпендикулярными траекториям. Законы движения вдоль всех траекторий такого фильтрационного потока идентичны, а потому достаточно изучить движение вдоль одной из траекторий, которую можно принять за ось координат - ось х.

    Плоскорадиальный поток.

    Траектории всех частиц жидкости - прямолинейные горизонтальные прямые, радиально сходящиеся к центру скважины, а скорости фильтрации во всех точках любого поперечного (перпендикулярного к линиям тока) сечения потока параллельны и равны между собой; изотахи и эквипотенциальные поверхности перпендикулярны траекториям и образуют цилиндрические окружности с осью, совпадающей с осью скважины.

    Схемы линий тока в любой горизонтальной плоскости потока будут идентичными и для характеристики потока достаточно рассмотреть движение жидкости в одной горизонтальной плоскости.

    Радиально-сферический поток. Траектории всех частиц жидкости - прямолинейные горизонтальные прямые, радиально сходящиеся к центру полусферического забоя; изотахи и эквипотенциальные поверхности перпендикулярны траекториям и образуют сферические поверхности.

    Скорость фильтрации в любой точке потока является функцией только расстояния этой точки от центра забоя. Следовательно, этот вид фильтрационного потока также является одномерным. Такой поток может реализовываться, когда скважина вскрывает только плоскую горизонтальную, непроницаемую кровлю пласта

    а б

    в
    11. Капиллярные явления в пористых средах. Капиллярное давление в сужающихся и расширяющихся капиллярах. Капиллярная пропитка.
    Капиллярные явления - поверхностные явления на границе жидкости с другой средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает минимальной поверхностью при данном объеме.

    В отсутствие силы тяжести или в случае очень малых масс жидкость всегда принимает сферическую форму (капля), кривизна поверхности которой определяет многие свойства вещества. Поэтому капиллярные явления ярко выражены и играют существенную роль в условиях невесомости, при дроблении жидкости в газовой среде (или распылении газа в жидкости) и образовании систем, состоящих из многих капель или пузырьков (эмульсий, аэрозолей, пен). При контакте жидкости с конденсированными телами (другой жидкостью или твердым телом) искривление поверхности раздела происходит в результате действия межфазного натяжения.

    В случае смачивания, например, при соприкосновении жидкости с твердой стенкой сосуда, силы притяжения, действующие между молекулами твердого тела и жидкости, заставляют ее подниматься по стенке сосуда, вследствие чего примыкающий к стенке участок поверхности жидкости принимает

    вогнутую форму. В узких каналах, например, цилиндрических капиллярах, образуется вогнутый мениск - полностью искривленная поверхность жидкости (рис. 1).



    Рис. 1. Капиллярное поднятие на высоту hжидкости, смачивающей стенки капилляра радиуса r;q - краевой угол смачивания.

    .Капиллярное давление. Так как силы поверхностного (межфазного) натяжения направлены по касательной к поверхности жидкости, искривление последней ведет к появлению составляющей, направленной внутрь объема жидкости. В результате возникает капиллярное давление, величина которого Dp связана со средним радиусом кривизны поверхности r0 уравнением Лапласа:

    Dp = p1 - p2 = 2s12/r0, где p1 и p2 - давления в жидкости 1 и соседней фазе 2 (газе или жидкости), s12 - поверхностное (межфазное) натяжение.

    Если поверхность жидкости вогнута (r0<0), давление в ней оказывается пониженным по сравнению с давлением в соседней фазе p1 < р2 и Dp < 0. Для выпуклых поверхностей (r0 > 0) знак Dp изменяется на обратный. Отрицательное капиллярное давление, возникающее в случае смачивания жидкостью стенок капилляра, приводит к тому, что жидкость будет всасываться в капилляр до тех пор, пока вес столба жидкости высотой h не уравновесит перепад давления Dp. В состоянии равновесия высота капиллярного поднятия определяется формулой Жюрена:



    где ρ1 и ρ2- плотности жидкости 1 и среды 2, g – ускорение свободного падения , r - радиус капилляра, q – краевой угол смачивания. Для несмачивающих стенки капилляра жидкостей cos q < 0, что приводит к опусканию жидкости в капилляре ниже уровня плоской поверхности (h < 0).

    Капиллярная пропитка. Понижение давления под вогнутыми менисками - одна из причин капиллярного перемещения жидкости в сторону менисков с меньшим радиусом кривизны. Частным случаем этого является пропитка пористых тел - самопроизвольное всасывание жидкостей в лиофильные поры и капилляры.
    12. Тепловые свойства горных пород.
    Тепловые свойства горных пород характеризуются удельной теплоёмкостью, коэффициентом температуропроводности и коэффициентом теплопроводности. Удельная (массовая) теплоёмкость характеризуется количеством теплоты, необходимым для нагрева единицы массы породы на 1°С:



    Этот параметр необходимо учитывать при тепловом воздействии на пласт.

    Коэффициент теплопроводности (удельного теплового сопротивления) l характеризует количество теплоты dQ, переносимой в породе через единицу площади S в единицу времени t при градиенте температуры dT/dx:



    Коэффициент температуропроводности (α) характеризует скорость прогрева пород (илискорость распространения изотермических границ).



    λ = теплопроводность

    Коэффициенты линейного (aL) и объёмного (aV) расширения характеризуют изменение размеров породы при нагревании:





    Теплоёмкость пород зависит от минералогического состава пород и не зависит от строения и структуры минералов. Удельная теплоёмкость увеличивается при уменьшении плотности породы и растёт с увеличение температуры и влажности в

    пределах 0,4-2 кДж/(кг×К).

    Теплопроводность и температуропроводность пород очень низки по

    сравнению с металлами. Поэтому для прогрева призабойных зон требуется очень большая мощность нагревателей. Вдоль напластования теплопроводность выше, чем поперёк напластования на 10-50%.
    Коэффициенты линейного и объёмного расширения изменяются в зависимости от плотности породы аналогично теплоёмкости. Наибольшим значением коэффициентов расширения обладает кварцевый песок и другие крупнозернистые породы.

    Коэффициент линейного расширения пород уменьшается с ростом плотности минералов.

    13. Упругие изменения свойств коллекторов в процессе разработки нефтяных и газовых месторождений.

    Важное значение в процессе разработки нефтяных и газовых месторождений имеют деформации пород, происходящие в процессе эксплуатации месторождения вследствие изменения пластового давления, которое может уменьшаться со временем и вновь восстанавливаться при искусственных методах поддержания давления в залежи.

    Горная порода в пласте находится в сложных условиях напряженного состояния. При этом вертикальные и горизонтальные напряжения в основном не равны между собой. Так как в большинстве случаев истинный характер распределения напряжений в различных направлениях остается неизвестным, напряжения в породе в глубоко залегающих горизонтах оценивают некоторой средней величиной, полагая, что на большой глубине они не зависят от направления. На этом основании средние напряжения в скелете породы оценивают по законам гидростатики.



    Схема проявления горного и эффективного давление в пласте.



    σэф = эффективное напряжение

    σ = КОЭФФИЦИЕНТ СЖИМАЕМОСТИ ПОРОДЫ [1/Па]

    p = КОЭФФИЦИЕНТ ОБЪЁМНОЙ УПРУГОСТИ ПЛАСТА
    Представим себе элемент породы, заключенный в непроницаемую эластичную оболочку и испытывающий горное давление с, а в порах пласта, насыщенного жидкостью,— давлениер. До начала эксплуатации залежи пластовое давление жидкости способствует уменьшению нагрузки, передающейся на скелет породы от массы вышележащих отложений (если кровля пласта непроницаема). Тогда давление на скелет породы (эффективное давление):

    где ргор — горное давление, остающееся постоянным в процессе эксплуатации залежи; рпл —пластовое давление.

    При извлечении нефти на поверхность пластовое давление падает, и давление на скелет пород рск увеличивается. Если затем увеличить рпл,давление вышележащих пород на скелет пласта уменьшится. Наибольший интерес для разработки и эксплуатации нефтяных месторождений представляет изменение объема порового пространства пласта при уменьшении пластового давления.

    Установлено, что при падении пластового давления объем порового пространства пласта уменьшается вследствие упругого расширения зерен породы и возрастания сжимающих усилий, передающихся на скелет от веса вышележащих пород. При этом зерна породы испытывают дополнительную деформацию и пористость среды уменьшается также вследствие перераспределения зерен и более плотной упаковки их и изменения структуры пористой среды.

    На величину объема пор оказывают влияние цементирующие вещества породы, обладающие иногда большей упругостью, чем зерна скелета, и участвующие в процессе переукладки зерен породы.

    Считается, что основные изменения объема пор при уменьшении пластового давления происходят вследствие возрастания сжимающих усилий, передающихся на пласт от веса вышележащих пород.

    Объемная деформация пород при всестороннем сжатии описывается тремя коэффициентами сжимаемости, которые целесообразно определять по следующим соотношениям:





    Где β βп βтв коэффициенты сжимаемости породы, пор и твердой фазы; V объем породы, Vп- объем пор, Vтв- объем твердой фазы. σ - среднее нормальное напряжение.
    Между β βп βтв существует связь



    Исследования показывают, что для большинства изученных пород нефтяных месторождений уменьшение или увеличение объема пор с изменением пластового давления происходит согласно закону Гука



    где Vо — объем элемента пласта (или объем исследуемого керна) в м3; ΔVпор — изменение объема пор этого керна при изменении пластового давления на Δр (в Па) в м3; βС — коэффициент объемной упругости пористой среды в Па-1.

    Коэффициент объемной упругости пористой среды характеризует относительное (поотношению ко всему выделенному элементу объема пласта) изменение объема порового пространства при изменении давления на 1 Па.

    14. Движение жидкости в трещиноватых и трещиновато-пористых пластах.
    Трещиноватые породы имеют сложную систему строения, а движение в них жидкости и газа отличается некоторыми особенностями по сравнению с движением в пористой среде. В трещиноватой породе имеются микро и макротрещины, мелкие и крупные каверны, полости; сама порода —матрица (пространство между трещинами) может быть абсолютно непроницаемой или представлять собой обычную пористую среду. Раскрытия макротрещин имеют порядок 1мм, а в отдельных случаях и больше, микротрещин – 1-100мкм.

    Исходя из того, что сопротивление движению жидкости в трещиноватых породах достаточно велико, исследователи считают, что макротрещины не имеют значительной протяженности и в большинстве случаев соединяются между собой микротрещинами (которые и создают большие сопротивления).

    В чисто трещиноватых породах (см. рис.а) блоки породы, расположенные между трещинами, практически непроницаемы, движение жидкости и газа происходит только по трещинам (на рисунке показано стрелками), т. е. трещины являются и коллектором, и проводником жидкости к скважинам. К таким породам относятся сланцы, кристаллические породы, доломиты, мергели и некоторые известняки. Рассматривая трещиноватую породу с жидкостью как сплошную среду, нужно за элемент породы принимать объем, содержащий большое количество блоков, и усреднение фильтрационных характеристик проводить в пределах этого элемента, т. е. масштаб должен быть гораздо большим, чем в пористой среде.


    Схемы чисто трещиноватой (а) и трещиновато-пористой (б) сред: 1,3 – трещины; 2-пористые блоки

    Трещиновато-пористая среда представляет собой совокупность пористых блоков, отделенных один от другого развитой системой трещин (см. рис.б). Жидкость или газ насыщают и проницаемые блоки, и трещины. При этом поперечные размеры трещин значительно превосходят характерные размеры пор, так что проницаемость системы трещин k1значительно больше, чем проницаемость системы пор в блоках k2.В то же время трещины занимают гораздо меньший объем, чем поры, так что коэффициент трещиноватости m1-отношение объема, занятого трещинами, к общему объему породы, существенно меньше пористости отдельных блоков m2.

    Трещиновато-пористые коллекторы - это в основном известняки, иногда песчаники, алевролиты, доломиты.
    1   2   3   4


    написать администратору сайта