Главная страница
Навигация по странице:

  • 1Расчетно-техническая часть Характеристика геологического строения основного эксплуатационного объекта

  • 1.2 Анализ текущего состояния системы ППД

  • 1.3 Регулирование напорных характеристик насосов (штуцирование, “расшивка” водоводов по разнонапорным насосам и скважинам)

  • Рис.4 Схема оптимального подключения скважин при расшивке водоводов

  • 1.4 Реализация каскадной технологии подготовки воды

  • Рис.6. Принципиальная схема каскадной технологии очистки закачиваемых вод

  • Рис. 7. Технологическая схема каскадной очистки сточной воды на ЛБКНС

  • Рис.8. Схема подключения к КНС нагнетательных скважин, вскрывших пласты низкой, средней и высокой проницаемости

  • 2.2 Мероприятия по охране недр и окружающей среды при ППД

  • Список использованной литературы

  • курсовая оборудование для поддержания пластового давления - копия. 8 ТЕМАкурсовая оборудование для поддержания пластового давления. 1. Расчетнотехническая часть


    Скачать 144.16 Kb.
    Название1. Расчетнотехническая часть
    Анкоркурсовая оборудование для поддержания пластового давления - копия.docx
    Дата14.02.2021
    Размер144.16 Kb.
    Формат файлаdocx
    Имя файла8 ТЕМАкурсовая оборудование для поддержания пластового давления .docx
    ТипРеферат
    #176397

    Содержание
    Введение...............................................................................................................4

    1.Расчетно-техническая часть

    1.1 Характеристика геологического строения основного эксплуатационного объекта................................................................................................................

    1.2 Анализ текущего состояния системы ППД..................................................

    1.4 Регулирование напорных характеристик насосов (штуцирование, “расшивка” водоводов по разнонапорным насосам и скважинам)..................

    1.5 Реализация каскадной технологии подготовки воды................................

    2 Организационная часть...................................................................

    2.1 Техника безопасности и охрана труда при ППД....................................

    2.2 Мероприятия по охране недр и окружающей среды при ППД.............

    Заключение.....................................................................................................

    Список использованной литературы..................................................................
    Введение
    Основные месторождения Республики Татарстан вступили в позднюю стадию разработки, характеризующейся высокой обводненностью продукции, закономерным снижением уровней добычи нефти. На данном этапе ставится задача стабилизации уровня добычи нефти на достигнутом уровне в течение длительного времени (20-25лет). Данная задача требует подключения в разработку всех ресурсов республики, в том числе месторождений с трудно извлекаемыми запасами, Западно-Лениногорская площадь Ромашкинского месторождения является одним из подобных месторождений. Эксплуатация данной площади традиционными методами не рентабельна. В данной работе сделана попытка показать, как месторождение может оказаться рентабельным, если подобрать существующие новые технологии разработки и новые методы повышения коэффициента нефтеизвлечения.


    1Расчетно-техническая часть

      1. Характеристика геологического строения основного эксплуатационного объекта


    Западно-Лениногорская площадь расположена в южной части Ромашкинского нефтяного месторождения и является краевой.Разрез площади представлен отложениями девонской ,каменноугольной и пермской систем палеозоя. Проектирование разработки Западно-Лениногорской площади впервые было начато во ВНИИ в1954г. В1968г.Западно-Лениногорская площадь была выделена в самостоятельный объект разработки, где был сделан под счет запасов только для Западно-Лениногорской площади. Данным проектом был предусмотрен максимальный уровень добычи нефти 3,4 млн. т.с сохранением его в течение6-7лет. Фактически же максимальный уровень добычи был достигнут в 1971г. и составил 3,89 млн. т. Принятый вариант разработки предусматривал ряд мероприятий по дальнейшей разработке площади: бурение скважин,очаговое заводнение, уменьшение забойного давления до 90 атмосфер, увеличение давления нагнетания для верхних пластов до18-20МПа,увеличение резервных скважин до 100.

    Западно-Лениногорская площадь расположена на юге Ромашкинского месторождения. На севере площадь контактирует с Южно-Ромашкинской, на западе с Зай-Каратайской и на востоке с Восточно-Лениногорской площадями.

    В географическом отношении Западно-Лениногорская площадь представляет собой пересеченную местность с многочисленными оврагами и балками. Абсолютные отметки колеблются в пределахот100до250 метров. Большую часть площади занимают лесные массивы. Климат района резкоконтинентальный. Суровая, холодная зима с сильными буранами и жаркое лето. Преобладающее направление ветров –Юго-Западное. Самым холодным месяцем является январь ,имеющий среднюю месячную температуру -13,7 – 14,4 С. Наиболее теплым месяцем является июль 18 – 19 С. Абсолютный минимум температуры достигает в некоторые годы до-49 С. Максимальная летняя – 38 С.Наибольшее количество осадков выпадает в июне (до 60 мм).Минимальное в феврале(до17 мм ).Грозовая деятельность от40до60мин.вгод.

    Основным объектом разработки являются запасы нефти, приуроченные к терригенным коллекторам пашийского горизонта Д1,которые представлены двумя группами: высокопродуктивные с проницаемостью более0,100 мкм2и мало продуктивные с вариацией проницаемости 0,30 – 0,100 мкм2. В свою очередь в рамках первой группы выделены коллекторы с объемной глинистостью менее и более2%.Таким образом объект разработки Д1 представляется совокупностью трех типов пород – коллекторов с различной фильтрационной характеристикой, которые имеют прерывистый характер строения, выражающийся в смене одного типа коллекторов другим, а также и полным их замещением не коллекторами.

    Фациальный состав коллекторов изменяется от гомодисперсных алевролитов до песчаныхфракций.

    Рисунок 1. Размещение площадей со схемами заводнениягоризонтаД1 Ромашкинского месторождения
    I - контур залежи горизонта Д1; II - линии разрезания; III, V - границы площадей; IV -очаги заводнения на площадях.

    Площади: 1 - Миннибаевская, 2 - Абдрахмановская, 3 - Павловская, 4 - Зеленогорская, 5 - Южно-Ромашкинская, 6 - Зай-Каратайская, 7 - Альметьевская, 8 - Северо-Альметьевская, 9 - Алькеевская, 10 - Восточно-Сулеевская, 11 - Северо-Азнакаевская, 12 - Центрально-Азнакаевская, 13 - Южно-Азнакаевская, 14 - Чишминская, 15 - Березовская, 16 - Ташлиярская, 17 - Западно-Лениногорская, 18 - Куакбашская, 19 - Холмовская, 20 - Кармалинская, 21 - Южная, 22 - Восточно-Лениногорская, 23 - Сармановская, 24 - Уральская.

    Существующее представление о линзовидном строении верхней пачки пластов и площадном-нижней не изменилось в процессе продолжающегося разбуривания площади.

    Выделенные блоки не равнозначны по представительности той или иной группы пород. Для сравнения приведены результаты сопоставления площадей распространения этих групп по пластам в пределах каждого блока. Достаточно однозначно, как в целом по пласту, так и по блокам происходит увеличение доли коллектора сверху вниз. Из общей закономерности выпадает пласт« а» на втором и третьем блоках, по каждому доля коллектора выше, чем в нижележащих пластах пачки " б ".

    Аналогичная закономерность прослеживается по высокопродуктивным неглинистым коллекторам, но с различной представительностью в строении пластов. Естественно, что разная степень представительности групп пород в строении пластов является одним из главных аргументов, определяющих состояние выработки запасов нефти. Очевидно, что это также является одной из важнейших причин особенностей выработки запасов по блокам.

    В силу многопластового строения горизонта Д1 становится очевидным многообразие разрезов скважин с различным сочетанием пластов, представленных разными группами коллекторов и залегающих на различных стратиграфических уровнях. В результате обработки практически всех разрезов по скважинам они систематизированы в 6 типов с представительностью от 1 до 6 пластов. Кроме того, каждый из типов рассматривался с точки зрения возможных вариантов сочетания высоко и малопродуктивных коллекторов. В рамках выделенных типов разрезы сгруппированы в подтипы с их долей участия в строении объекта.

    В процессе изучения особенностей геологического строения горизонта Д1была оценена величина литологической связанности между пластами. Из приведенных данных и в сравнении с другими соседними площадями можно однозначно сказать, что пласты залегают достаточно обособленно друг от друга. Как и по другим площадям, сравнительно высокая связь отмечается между пластами" б1 "и" б2 "-41%;" г1 "и" г2 " – 34%и несколько меньшая связь между остальными пластами. С одной стороны, как известно, наличие зон слияния способствует возникновению естественных очагов заводнения, что способствует интенсификации выработки запасов нефти. С другой стороны достаточная обособленность способствует эффективному использованию дифференциального подключения пластов к разработке. В этой связи данная площадь выгодно отличается от соседней Южно-Ромашкинской площади.
    1.2 Анализ текущего состояния системы ППД
    На протяжении многих десятилетий развития нефтяной промышленности разработка месторождений осуществлялась путем бурения только добывающих скважин и извлечения нефти из них за счет использования ресурсов всех естественных видов пластовой энергии. По истощении пластовой энергии и снижении забойных давлений в добывающих скважинах иногда до нуля месторождения забрасывались при извлечении не более 25 – 30 % от первоначальных запасов нефти в пласте.

    Хотя вода – спутник нефти с момента ее образования, появление воды в добывающих скважинах рассматривалось как аварийное состояние и скважины останавливались. И только в конце 20-х – начале 30-х годов было замечено, что из скважин, в которых появлялась вода, извлекалось нефти больше и добыча была стабильней, чем в безводных скважинах. В 1932 г. комиссия под руководством акад. И. М. Губкина установила возможность и эффективность вытеснения нефти из пластов контурными пластовыми водами. Естественный водонапорный режим разработки нефтяных залежей был признан наиболее эффективным.

    С 30-х годов начала развиваться теория нефтяного пласта, водонапорного режима разработки и интерференции скважин. Однако идея восполнения пластовой энергии, расходуемой на вытеснение нефти и нагнетанием воды в пласты через скважины с поверхности, у нас в стране впервые была выдвинута и осуществлена лишь в послевоенные годы под руководством акад. А. П. Крылова.

    Искусственное заводнение получило широкое распространение. На месторождениях, разрабатываемых с заводнением залежей, в настоящее время добывается около 90 % от общего уровня добычи нефти, в пласты закачивается более 2 млрд. м3 в год. Популярность искусственного заводнения нефтяных залежей обусловлена его следующими преимуществами:

    - доступностью и бесплатностью воды;

    - относительной простотой нагнетания воды;

    - относительно высокой эффективностью вытеснения нефти водой.

    Первоначально применение заводнения связывалось в основном с закачкой воды в нагнетательные скважины, расположенные в законтурной части месторождения (законтурное заводнение). Принципы законтурного заводнения- многоэтапность разработки, перенос нагнетания, отключение малообводненных скважин и другие – не получили распространения.

    Развитием законтурного заводнения явилось создание системы внутриконтурного заводнения. В этом случае месторождение рядами нагнетательных скважин “разрезается” на отдельные полосы, блоки или площади самостоятельной разработки и нефть вытесняется нагнетаемой водой. Впервые внутриконтурная система разработки была запроектирована в 1955 г. на Ромашкинском месторождении.

    В начале 60-х годов институтом «Гипровостокнефть» были обоснованы блоковые системы внутриконтурного заводнения. При этих системах требуется разрезать нефтяное месторождение на блоки оптимальных размеров, которые исключают консервацию запасов нефти во внутренних зонах.

    В случае приконтурного заводнения нагнетательные скважины располагаются внутри залежей в непосредственной близости от внешнего контура нефтеносности. Применяется для разработки небольших залежей (шириной не более 4-5 км) с известным положением контуров нефтеносности при относительно выдержанных пластах, высокой проницаемости и малой вязкости нефти.

    При осевом разрезании скважины нагнетательного ряда размещаются вдоль длинной оси структуры. Осевое разрезание применяется при ширине залежей более 4-5 км и обычно сочетается с законтурным заводнением.

    Площадное заводнение особенно эффективно применять при разработке малопроницаемых и сильно прерывистых пластов.

    Очагово-избирательная система заводнения предназначена для разработки месторождений с высокой неоднородностью и прерывистостью продуктивных пластов. По этой системе работают нефтяные залежи нижнего карбона на Ромашкинском месторождении.

    В сильно неоднородных пластах нагнетаемая вода прорывается к добывающим скважинам по высокопроницаемым слоям и зонам, оставляя не вытесненной нефть в малопроницаемых слоях, участках зонах и др. Это приводит к тому, что участки нефтяных залежей за фронтом заводнения представляют собой бессистемное чередование заводненных высокопрони-

    цаемых и нефтенасыщенных менее проницаемых слоев и зон.

    Такая ситуация наблюдается на Западно-Лениногорской площади с внедрением в разработку верхних пластов девона.

    Одним из эффективных способов дополнительного охвата заводнением не вовлеченных зон и участков могут служить циклическое, нестационарное заводнение послойно неоднородных продуктивных пластов и, как сопутствующий ему, способ изменения направления, кинематики потоков жидкости в систему скважин по простиранию неоднородных пластов.

    Циклическое воздействие на пласты способствует преодолению характера проявления капиллярных сил, выравниванию насыщенностей, т. е. повышению охвата заводнением неоднородных пластов.

    На Западно-Лениногорской площади сложилась комбинированная система разработки, сочетающая линейное разрезание площади на 3 блока с очаговым заводнением. Пластовое давление поддерживается 7 КНС с общим нагнетательным фондом скважин 135. Давление нагнетания варьируется от 150 до 195 кг/см3. КНС обеспечивается как сточными нефтенасыщенными водами, так и пресной водой. Общий объем закачки составляет примерно 7500 м3/сут. Из них 5000 м3/сут сточные воды.

    Для поддержания давления нагнетания применяются различного типа насосные агрегаты: от серийных ЦНС-180 до малопроизводительных насосов ГНУ «РЭДА» и ЦНС-45-1800. Разработка ведется в основном верхних пластов горизонта Д1.

    В последнее время для успешной разработки слабопроницаемых пластов внедряют индивидуальные погружные насосные установки (УЭЦНВ). Они внедряются для увеличения давления нагнетания и вовлечения в разработку слабопроницаемых пластов.

    Система разработки Западно-Лениногорской площади предусматривает закачку химических реагентов для повышения нефтеотдачи пластов.
    1.3 Регулирование напорных характеристик насосов (штуцирование, “расшивка” водоводов по разнонапорным насосам и скважинам)
    Для оптимизации разработки продуктивных пластов и поддержания пластовых давлений на эксплуатационных скважинах, необходимо чтобы отбор пластовых флюидов компенсировался закачкой жидкости в нагнетательные скважины.

    Существует несколько способов поддержания характеристик разработки пластов. Классическая схема «одна скважина – один водовод» с фиксированной закачкой при разработке часто нарушается. На один водовод подключаются несколько скважин различной приемистости, давление нагнетания при этом изменяется в широких пределах.

    Одним из методов выполнения режимов закачки является регулирование расхода установкой штуцеров, расшивкой водоводов. Оптимальным вариантом является подключение одной, двух скважин на один водовод, подключение нагнетательных скважин различной приемистости на насосы различной производительности.

    Для разработки скважин с различной приемистостью применяется подключение скважин к насосным агрегатам высокого и низкого давлений. Это дает возможность разработки пластов при различных давлениях нагнетания. В НГДУ “Лениногорскнефть” и в частности на Западно-Лениногрской площади применяются малопроизводительные насосы высокого и низкого давлений с объемами закачки от 200 м3/сут до 1500 м3/сут, давлением нагнетания от 100 кг/см2до 210 кг/см2.

    Подключение на один водовод одной или двух скважин позволяет приборами на КНС постоянно контролировать расход воды по скважинам, давление нагнетания, что позволяет вести баланс закачиваемой воды, а значит правильно вести разработку нефтеносных горизонтов.


    Рис.4 Схема оптимального подключения скважин при расшивке водоводов


    Рис.5. Схема подключения скважин с различной приемистостью
    Штуцера предназначены для регулирования давления нагнетания,объемов закачиваемой в пласт воды, с помощью изменения площади проходного сечения трубопровода.Применение штуцеров является одним из эффективных методов выравнивания пластовых давлений, равномерного распределения давлений по нагнетательным скважинам и зависит от отбора пластовой жидкости из окружающих добывающих скважин.
    1.4 Реализация каскадной технологии подготовки воды
    Продуктивные пласты горизонтов Д1До Ромашкинского месторождения характеризуются высокой макро- и микронеоднородностью, которые не обнаруживаются при исследованиях комплексом стандартного каротажа, но оказывают существенное влияние на процессы вытеснения нефти путем закачки различных типов вод (пластовые, сточные, пресные).

    На основе новых петрофизических исследований малопродуктивных пластов, выполненных в ТатНИПИнефти, НТЦ «ЭКОТЕХ», а также компаниями «Серк-Бейкер» и «Тоталь», определены новые явления, не учитываемые прежде.

    Пористая среда характеризуется двумя параметрами: размерами и распределением по размерам пор, а также соединяющих их поровых каналов. Для пластов 2 класса I и 2 группы 50-60% пор и поровых каналов по ртутной порометрии имеют размеры соответственно 25-75 и 6-12 микрон. Этот фактор налагает новые требования при оценке допустимого содержания твердых взвешенных частиц в закачиваемой воде: необходима регламентация не только общего их содержания, но и размеров.

    Кроме того, в составе пористой среды имеются мелкие частицы, которые, отрываясь от зерен пласта, осуществляют миграцию по порам и поровым каналам. Количество и размеры этих частиц определяютсякак коллекторскими свойствами пласта, так и интенсивностью воздействиянапластпризакачкевытесняющегоагента.Причем движение мигрирующих частиц имеет место как при прямой, так и при обратной фильтрации, а их количество достигает до 25-30 тыс. частиц на миллилитр.

    Экспериментально установлено, что при любой системе очистки фильтрация закачиваемой воды через пористую среду сопровождается снижением ее проницаемости, причем, если при закачке ультрафильтрованной воды (размеры частиц 0,2 микрона) темпы снижения проницаемости составляют порядка 0,15% на один поровый объем, то при закачке неочищенной речной воды это снижение достигает 2,2%. После прокачки около 130 и 36 поровых объемов, темп падения проницаемости уменьшается, соответственно, до 0,02 и 0,17%.

    При обратной фильтрации воды через образцы кернов имеет место восстановление проницаемости в интервале от 0,261 до 1,061 исходного значения (для различных типов пород). Средние величины по 20 образцам при фильтрации ультрафильтрованной воды составили: уменьшение при прямой прокачке 0,576 и восстановление при обратной прокачке 0,745 от исходной величины. В некоторых случаях проницаемость не восстанавливается вообще.

    Оценка необходимых объемов нагнетания для заводнения различных типов коллекторов на остаточные запасы нефти при водонефтяном факторе, равном 3 и 5 соответственно, показала, что весь объем вод, подлежащих очистке, может составить 1,55-2,2 млрд. м3, который распределяется по типам коллекторов в соотношениях: 1 группа 1 класс - 56%: 1 группа 2 класс - 21% и 2 группа - 23%. Из различных источников загрязнения продуктивного пласта первым из них является сам пласт, в продукции которого содержится от 16 до 72 мг/л твердых взвешенных частиц (ТВЧ), причем 83-87% из них имеют размеры менее 5 мкм, а более 10 мкм – 5-8%. Затем по пути движения воды от очистных сооружений до устья нагнетательной скважины (НС) количество ТВЧ возрастает еще на 30%.

    Следовательно, как уже отмечалось, сама система ППД является мощным источником формирования ТВЧ, что требует новых подходов к ее созданию.

    Известно, что в пресной воде в основном превалируют частицы 1-5 мкм, а в сточной – 0,2-1 мкм. Это свидетельствует об эффективности промысловых очистных сооружений, извлекающих из воды не только крупные частицы, которые изначально содержались в ней. Количество ТВЧ составляет 106-1011 единиц на один литр.

    Установлено, что основная доля кольматирующего вещества содержится в частицах 6-15 мкм (56,9%) и 15-30 мкм (33,8%), которые и должны быть удалены в первую очередь.

    Качество воды и содержание ТВЧ определяют основные параметры закачки воды в пласт, в том числе - давление закачки Р, расход воды Q, накопленный объем закачанной воды W, время работы скважины t, скорость закачки (фильтрации) V при необходимой площади фильтрации F.

    Для каждой скважины качество воды должно рассчитываться с полным учетом их коллекторских свойств по методикам НТЦ «ЭКОТЕХ», Для вытеснения нефти водой из слабопроницаемых коллекторов допустимые размеры частиц могут иметь разные значения, в том числе 0,3-1 мкм.

    Расчетные значения размеров поровых каналов и частиц, рекомендуемое качество сточной воды для закачки в пласты с низкой, средней и высокой проницаемостью для некоторых пластов НГДУ «Лениногорскнефть» приведены в таблицах №9, №10


    Таблица №10






    Качество

    Допустимый

    ПДК в воде, мг/л

    п/п

    Пласты

    сточной

    размер частиц,

    ТВЧ

    нефти







    воды

    мкм







    1.

    Низкой проницаемостью

    высшее

    2,2

    7

    25




    (0,044-0, 124 дарси)













    2.

    Среднейпроницаемо-

    среднее

    2,8

    15

    25




    стью (0,1 4-0.25 дарси)













    3.

    Высокойцроницаемо-

    базовое

    5,6

    25

    25




    стью (0,25 и выше)














    Известно, что в пористой среде практически не задерживаются взвешенные частицы примесей, размер которых в 4-5 раз меньше, чем диаметр порового канала.

    Объемы сточной воды высшего, среднего и базового качества для закачки в пласты с низкой, средней и высокой проницаемостью, например, по ЛБКНС, КНС-18, КНС-38а и КНС-39 НГДУ «Лениногорскнефть» приведены в таблице №11

    Из таблицы 6.9 следует, что по четырем КНС для закачки в пласты требуется порядка 1370 тыс.м3/год сточной воды, в т.ч. 425 тыс.м3 - высшего, 355,5 тыс.м3 - среднего и 590,1 тыс.м3 - базового качества.

    Таблица №11




    Качество сточной воды

    Расчетная потребность воды разного качества (тыс. м3/год) по

    № п/п

    ЛБКНС

    КНС-18

    КНС-38а

    КНС-39

    четырем КНС

    1.

    2.

    3.

    Высшее Среднее Базовое

    59,5 (19,1%)

    135,0 (43,1%)

    118,6 (37,9%)

    117,7 (29,1%)

    66,2 (16,4%)

    220.5 (54,5%)

    146,0 (28,7%)

    143,8 (28,1%)

    219,5 (43.1%)

    101,8 (70,8%)

    10,5 (7,3%)

    31,5 (21,9%)

    425,0 (31,0%)

    355,5 (25,9%)

    590,1 (43.1%)


    Закачка воды в соответствии с коллекторе к ими свойствами пластов и пропластков, вскрытых как индивидуальным, так и общим забоем при минимальной кольматации пор фильтрующих пород обеспечивает:

    - увеличение текущей добычи нефти;

    - извлечение из недр нефти, не поддающейся вытеснению традиционными средствами;

    - эффективную выработку как высоко, - так и слабопроницаемых пластов;

    - кратное сокращение числа и длительности ремонтных работ по восстановлению приемистости нагнетательных скважин;

    - осуществление ремонтных работ в экологически чистом варианте;

    - высокоэффективную, экологически чистую утилизацию нефтешламов, извлекаемых из очищаемой воды при минимальных затратах;

    - дифференцирование по объему, качеству и сокращение на этой основе общих затрат на очистку закачиваемых вод;

    - значительную экономию электроэнергии, затрачиваемуюна поддержание пластовою давления.

    Решению о качестве, количестве и технологии закачки воды предшествуют детальный геологический и петрографический анализ пластов, интерференции нагнетательных и добывающих скважин, выбор приемлемой технологии заканчивания скважин бурением, вскрытия пластов и вызова притока.

    Для обеспечения наиболее эффективного управления нагнетательными скважинами предлагается специальный регламент по их эксплуатации с учетом специфики месторождения.

    Набор оборудования, применяемого при этом, определяется (см. рис. 6.3) коллекторскими свойствами скважин, их количеством и размещением по площади.

    Реальное размещение скважин с различными характеристиками пластов и компоновка оборудования по одной из площадей представлены на рис. 7, 8.

    Каскадная технология очистки закачиваемых вод предусматривает выполнение этих операций в несколько ступеней, осуществляемых на действующих очистных сооружениях до базового уровня с последующей дифференцированной доочисткой на КНС и отдельных скважинах. В ряде случаев предусматривается путевой отбор воды нужного качества в режиме «пиявки» с закачкой наиболее грязной воды в скважины с соответствующими коллекторскими свойствами.

    Проблема утилизации нефтешлама в этом случае не возникает.


    Рис.6. Принципиальная схема каскадной технологии очистки закачиваемых вод
    1- головные очистные сооружения I группы качества воды; 2 - гребенка, 3 - водоводы первой группы качества, 4 - КНС - кустовые насосные станции: 5 - узел доочистки воды второй ступени; 6 - водовод воды второй ступени очистки; 7 - узел доочистки воды третьей ступени; 8 - водовод воды третьей ступени очистки, 9 - узел очистки воды четвертой ступени; 10-13-нагнетательные скважины, принявшие воду первой, второй, третьей я четвертой ступеней очистки.


    Рис. 7. Технологическая схема каскадной очистки сточной воды на ЛБКНС
    а, б, в - качество сточной воды - соответственно базовое, среднее и высшее; I - гидроциклон;2 -ОГЖФ; 3-фильтр «Экон»; 4 - установка «Коалесцент»; 5 -вибратор БГ- 70/150; 6-ФЭП; 7 - емкость для сбора шлама; 8 - насос для подачи разбавленного водой шлама на КНС

    Эффективность применения каскадной технологии очистки воды в основном связана с:

    - вовлечением в разработку пластов низкой проницаемости и увеличением извлекаемых запасов нефти в объеме закачки воды повышенного качества;

    - объемов очистки воды по высшему качеству;

    - сокращением затрат на электроэнергию для закачки воды за счет снижения темпов роста давления закачки при сохранении приемистости скважин;

    - увеличением межремонтных периодов скважин, связанных с ОПЗ, и связанной с этим дополнительной добычей нефти;

    - снижением числа порывов водоводов за счет снижения ∆P;

    - сокращением затрат на ремонтные работы, связанные с ОПЗ;

    - уменьшением объемов шламов при изливах нагнетательных скважин при ремонтных работах;

    - снижением числа вновь бурящихся скважин в связи с утратой приемистости пробуренных ранее;

    - вовлечением в товарные поставки извлеченной из воды капельной нефти;

    - проявлением экологического эффекта от снижения загрязнений окружающей среды при порывах трубопроводов с нефтесодержащими водами;

    - исключениемпроблемы утилизации нефтесодержащих ТВЧ, характерной для других методов очистки и закачки пластовых вод;

    - переводом части трубопроводов из высоконапорных в категорию низконапорных;

    - снижением доли неэффективных затрат, связанных с бесполезной закачкой воды низкого качества в пласты, куда она поступать не могла в связи с кольматацией пор ТВЧ.


    Рис.8. Схема подключения к КНС нагнетательных скважин, вскрывших пласты низкой, средней и высокой проницаемости


    2. Организационная часть
    2.1 Техника безопасности и охрана труда при ППД
    При проведении работ по повышению нефтеотдачи должны строго соблюдаться общие требования техники безопасности, вытекающие из действующих правил и инструкций нефтегазодобывающей промышленности. Так, все рабочие, вновь поступающие на предприятие или переводимые с одного участка работы на другой, должны пройти производственный инструктаж по технике безопасности. Содержание инструктажа должно охватывать все виды работ, выполняемых конкретным работником в пределах профессии, на которую он принят на работу.

    Находясь на рабочих местах, рабочие должны пользоваться установленной для них спецодеждой, обувью и индивидуальными защитными приспособлениями. Рабочие места и участки работы должны оборудоваться указателями, предупреждающими рабочих об опасностях, а подвижные части механизмов должны ограждаться специальными заградительными щитами. Инструмент, которым пользуются рабочие при проведении работ, должен находиться в исправном состоянии.

    Большинство методов повышения нефтеотдачи проводят при высоких давлениях, а поэтому перед применением методов необходима предварительная опрессовка всего оборудования и трубопроводов при надлежащем достаточном оснащении всей системы обвязки трубопроводов исправными приборами (манометрами).

    При осуществлении поддержания пластового давления закачкой воды на всех объектах системы ППД – кустовые насосные станции, трубопроводы, скважины – должно быть организовано наблюдение за состоянием их исправности. Не допускается наличие утечек воды и газа. При обнаружении утечек газа все работы в зоне возможной загазованности должны быть прекращены. Не допускается проведение работ в системе ППД при загрязнении рабочего места или прилегающей территории нефтью, при отсутствии должного освещения. Не допускается проводить ремонтные работы в системе ППД по замене задвижек, контрольно-измерительных приборов и т.п. при наличии давления. При проведении ремонтных работ в насосных или компрессорных станциях пусковые устройства двигателей должны снабжаться плакатами «Не включать – работают люди». Если возникает необходимость проведения работ на скважинах с нефтегазопроявлением, то должны быть соблюдены правила противопожарной безопасности. Работать следует, находясь с наветренной стороны, и использовать инструмент, не создающий искр при соударении с оборудованием.

    При проведении физико-химических методов повышения нефтеотдачи в дополнение к общепромысловым требованиям охраны труда добавляются требования по знанию правил в обращении с химическими реагентами и дополнительные меры безопасности при этом. Так, при заводнении пластов с использованием ПАВ рабочие должны быть обучены правилам обращения с растворами. Не допускается попадание раствора ПАВ на тело и в глаза, поэтому при проведении работ рабочие должны пользоваться защитными очками и резиновыми перчатками. Не допускается стирка спецодежды врастворах ПАВ. НедопускаетсяразливрастворовПАВна нефтепромыслах и попадание их в озера, реки и т.п. При обнаружении утечек растворов ПАВ в системе ППД закачка раствора незамедлительно должна прекращаться.

    Столь же строгие требования предъявляются к работающим при использовании для целей повышения нефтеотдачи кислот или щелочей. Если в результате прорыва трубопровода или неисправностей запорной арматуры произошел разлив химических реагентов на территории промысла, то место, подвергшееся загрязнению, должно быть обозначено щитами с предупредительными надписями и незамедлительно дезактивировано.

    По эксплуатации погружных насосных установок при закачке воды в продуктивные горизонты предъявляются следующие требования:

    - к эксплуатации погружных насосных установок типа УЭЦНМВ допускаются лица не моложе18 лет, прошедшие медицинский осмотр, соответствующее обучение, производственную стажировку, инструктаж по безопасному ведению работ и проверку знаний по охране труда и технике безопасности;

    - рабочие, обслуживающие погружные установки должны знать характеристику применяемого оборудования, систему обвязки погружных насосов, расположение подводящих и напорных трубопроводов;

    - при эксплуатации погружных установок встречаются следующие опасные и вредные производственные факторы: высокое давление нагнетания, высокое напряжение питания электродвигателя, высокое содержание в воздухе углеводородов и сероводорода.

    Пожары на скважинах могут нанести большой материальный ущерб и вызвать несчастные случаи с людьми. Поэтому у устья запрещено пользоваться огнем, курить, включать электрооборудование, проводить сварочныеработы. Загорание следует ликвидировать. Пламя можно погасить сбиванием его сильной струей воды или инертного газа, изоляцией от воздуха и т.д.

    Загорание ликвидируют с помощью первичного инвентаря пожаротушения, который должен быть на пожарном посту и в автомашине для исследований скважин.
    2.2 Мероприятия по охране недр и окружающей среды при ППД
    Технологические процессы, существующие в нефтяной и газовой промышленности, сопровождаются выбросами в почву, водоемы и атмосферу значительных количеств производственных отходов, загрязняющих воду и воздух. Сброс загрязненных сточных вод, содержащих ядовитые органические и неорганические вещества, приводит к уничтожению растительных и рыбных богатств, ограничивает возможность использования водоемов для питьевого и промышленного водоснабжения, для сельского хозяйства, что приносит огромный ущерб народному хозяйству.

    Большую опасность на суше представляют промысловые сточные воды в связи с их высокой токсичностью и агрессивностью. Во избежание действия их на окружающую среду следует применять полную утилизацию всех сточных вод - повторнуюзакачку (после очистки) в продуктивные пласты.

    Внедрение этого мероприятия позволит за счет осуществления замкнутого цикла водопотребления избежать вредного последствия загрязнения водоемов и почвогрунтов при порывах трубопроводов.

    Снижению загрязнения на промыслах будут способствовать ликвидация внутрискважинного перетока пластовых вод, осуществление мероприятий по совершенствованию герметизации технологических процессов сбора, подготовки нефти, газа и сточных вод, внедрение методов и средств защиты оборудования от коррозии, блочных установок по дозированию ПАВ и др.

    Следует широко использовать рациональные схемы рекультивации земель. Рекомендуемые способы снятия и восстановления плодородного слоя почвы позволят снизить объем земляных работ и, главное, сохранить почвенный покров вокруг скважины.

    В НГДУ «Лениногорскнефть» по охране и рациональному использованию водных ресурсов выполняются следующие мероприятия:

    - капитальный ремонт водоводов;

    - внедрение металлопластмассовых труб;

    - использование ингибиторов коррозии для защиты трубопроводов (Нефтехим, Викор, Амфикор, СНПХ);

    - метод внедрения алюминиевых и магниевых протекторов для защиты от коррозии трубопроводов и запорной арматуры на блоках гребенок;

    - исследование и цементирование за контуром, в том числе подъем цемента за контуром;

    - герметизация эксплуатационной колонны;

    - доподъем цемента за эксплуатационной колонной;

    - ликвидация нефтегазопроявлений;

    - восстановление плодородного слоя земли на месте аварий методом внесения фосфогипса.

    Курсовым проектом предлагается новое мероприятие, которое значительно способствует охране недр и окружающей среды. Внедрение УЭЦН обеспечивает уменьшение вероятности порывов.

    При эксплуатации КНС в трубопроводах создается высокое давление и, следовательно, большая вероятность порывов. С переводом на УЭЦН используются трубопроводы с низкими давлениями, протяженность их сокращается, тем самым количество порывов уменьшается.

    Строительство кустовой насосной станции по данному мероприятию исключается, следовательно, отсутствуют всевозможные технологические утечки (из-под сальников, с пола насосной станции и др.).
    Заключение
    На основании тех данных и анализов приведенных в данном проекте я сделал вывод, что для достижения высоких уровней добычи нефти и газа необходимо вводить в эксплуатацию нефтяные и газовые скважины с потенциально возможными дебитами , обеспечивая их высокую производительность в процессе всей эксплуатации. К числуосновных причин низкой продуктивности скважин относятся слабая естественная проницаемость пласта и уменьшение проницаемости призабойной зоны пласта в следствии ее засорения механическими примесями и продуктами коррозии нефтепромыслового оборудования.

    Для достижения более высоких показателей проницаемости призабойной зоны пласта я предлагаю производить магнитную обработкуводы непосредственно перед ее закачкой в пласт. Устройства необходимые для обработки воды устанавливаются непосредственно на устье нагнетательной скважины

    Анализ условий эффективного применения магнитной обработки закачиваемой воды, лабораторные исследования и расчеты позволили обосновать механизм процесса. Согласно предложенной теории магнитная обработка разрушает агрегаты примесей железосодержащих соединений и приводит к появлению активных коллоидных и субколлоидных частиц, способных повысить проницаемость закольматированной глинистыми частицами призабойной зоны. Лабораторные исследования технологии показали возможность значительного увеличения приемистости слабопроницаемых коллекторов даже при использовании воды, отбираемой из открытых водоемов.

    Эксплуатация магнитных устройств на новых трубопроводах подтвердила предварительные выводы об увеличении приемистости и показала преимущества их использования в зимний период, опасный промерзаниями трубопроводов системы ППД. Наблюдения за скважинами показывают, что повышенная приемистость сохраняется в течении нескольких месяцев после снятия магнитных устройств для обработки воды.
    Список использованной литературы


    1. Хисамутдинов Н.И., Ибрагимов Г.З. Разработка нефтяных месторождений.- М.: 1994.

    2. Еронин В.А., Литвинов А.А., Кривоносов И.В., Голиков А.Д. Эксплуатация системы заводнения пластов.- М.: Недра. 1973 - 200 с.

    3. Тронов В.П., Тронов А.В. «Очистка вод различных типов для использования в системе ППД».- Казань: Фэн. 2001 - 560 с.

    4. Куцын П.В. Охрана труда в нефтяной и газовой промышленности: Учебник для техникумов.- М.: Недра. 1987. - 247 с.

    5. Правила безопасности в нефтегазодобывающей промышленности. Изд.2.- М.: Недра. 1975. - 253 с.

    6. Муравьев В.М. Эксплуатация нефтяных и газовых скважин.- М.: Недра. 1978 - 448 с.

    7. Муравьев В.М. Справочник мастера по добыче нефти. Изд. 3.- М.: Недра. 1975 - 264 с.


    написать администратору сайта