ИДЗ Волновая Оптика студентам. 1. Расстояние от источника света до экрана равно
Скачать 296 Kb.
|
4. Радиус четвертой зоны Френеля для плоского волнового фронта равен 3мм. Чему равен радиус шестой зоны Френеля? 5. Свет от некоторого источника представляет собой две плоские монохроматические волны с длинами λ1 и λ2. У экспериментатора имеется две дифракционных решетки. Число щелей в этих решетках N1 и N1, а их постоянные d1 и d2, соответственно. При нормальном падении света на дифракционную решетку 1 получено изображение в максимуме m, показанное на рисунке 1. После того, как дифракционную решетку 1 поменяли на решетку 2, изображение максимума m стало таким, как показано на рисунке 2. Постоянная решетки и число щелей у этих решеток соотносятся следующим образом … 1) N1 > N2, d1 = d2 2) N1 = N2, d1 > d2 3) N2 > N1, d1 = d2 4) N1 > N2, d1 > d2 6. Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете (=0,6 мкм) максимум пятого порядка отклонен на угол =180 Вариант 10 1. На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n1 1) (AB+BC)n2 -ADn1 =(2m+1)/2 2) ADn1=2m/2 3) (AB+BC)n2 -ADn1+/2=(2m+1)/2 4) (AB+BC)n2=2m/2 2. В опыте Юнга отверстия освещались монохроматическим светом. Расстояние между отверстиями d = 1 мм, расстояние от отверстий до экрана L = 4 м. Чему равна длина волны падающего на отверстия света, если на экране координата второй светлой полосы y2 = 4,8 мм. 3. Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны = 580 нм, падающим по нормали к поверхности пластинки. Найти толщину dвоздушного слоя между линзой и стеклянной пластинкой в том месте, где наблюдается пятое темное кольцо в отраженном свете. 4. На диафрагму с радиусом отверстияR= 1 мм падает свет (= 0,5 мкм) от точечного источника, находящегося на расстоянии a= 1 м от диафрагмы. Определите расстояние от диафрагмы до экрана, при котором в отверстии диафрагмы укладывается три зоны Френеля. 5. Имеются 4 решетки с различным числом штрихов n на единицу длины, освещаемые одним и тем же монохроматическим излучением различной интенсивности. На рисунке приведено распределение интенсивности света на экране, получаемое вследствие дифракции. (J – интенсивность света, – угол дифракции). Решетке с наибольшим числом штрихов на единицу длины соответствует рисунок под номером… 6. На узкую щель шириной a=0,02 мм падает нормально монохроматический свет с длиной волны =700 нм. Определите угол дифракции, соответствующий минимуму второго порядка. Вариант 11 1. Световой луч проходит расстояние L: часть этого пути r0 - в вакууме (n = 1), другую часть пути r - в однородной среде с показателем преломления n = 1,5. В каком из приведенных ниже случаев оптическая длина пути наименьшая? 2. На поверхность объектива (n= 1,7) нанесена тонкая прозрачная пленка (n1 = 1,3). На пленку нормально падают световые лучи с длиной волны = 0,56 мкм. Чему равна наименьшая толщина пленки, при которой произойдет максимальное ослабление отраженного света? 3. Установка для получения колец Ньютона освещается светом от ртутной дуги, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Какое по порядку светлое кольцо, соответствующее линии 1 =579,1 нм, совпадает со следующим светлым кольцом, соответствующим линии 2 = 577 нм? 4. Плоская световая волна (= 0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметромd= 1 см. На каком расстоянии от отверстия должна находиться точка наблюдения, чтобы отверстие открывало одну зону Френеля? 5. Между точечным источником света и экраном помещена непрозрачная преграда с круглым отверстием (см. рисунок). В отверстие укладывается четное число зон Френеля. Распределение интенсивности I светана экране качественно правильно изображено на графике под номером… 6. На дифракционную решетку с числом n= 600 штрихов на 1мм рабочей длины решетки нормально падает параллельный пучок монохроматического света с длиной волны =600 нм. Найдите угол max под которым наблюдается максимум наивысшего порядка. Вариант 12 1. На тонкую плоскопараллельную пластинку падает световая волна. Волна (1), прошедшая через пластинку, и волна 2, отраженная от нижней и верхней поверхностей пластинки, интерферируют. Интерференция наблюдается в проходящем свете. Для показателей преломления сред выполняется соотношение Оптическая разность хода 21 волн 1 и 2 равна… 1) 21 = (AB+BC)n2 -ADn3 2) 21 = ADn3 3) 21 = (AB+BC)n2 -ADn3 +/2 4) 21 = (AB+BC)n2 -ADn3 +2/2 2. В опыте Юнга на пути одного из интерферирующих лучей помещалась тонкая стеклянная пластинка, вследствие чего центральная светлая полоса смещалась в положение, первоначально занятое пятой светлой полосой. Луч падает перпендикулярно к поверхности пластинки. Показатель преломления пластинки п = 1,5. Длина волны = 590 нм. Какова толщина dпластинки? 3. На стеклянный (n=1,5) клин нормально к его грани падает монохроматический свет с длиной волны = 0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l = 1 см наблюдается 10 темных интерференционных полос. Определить преломляющий угол клина. 4. Плоская световая волна (= 0,7 мкм) падает нормально на диафрагму с круглым отверстием диаметром D= 2,8 мм. Определите расстояния b1, b2, b3 от диафрагмы до наиболее удаленных от нее точек, в которых наблюдаются максимумы интенсивности. 5. На дифракционную решетку падает излучение одинаковой интенсивности с длинами волн λ1 и λ2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, если λ2 > λ1? (J – интенсивность, φ – угол дифракции) 6. Дифракционная решетка находится на расстоянии L= 3 м от экрана. При освещении ее нормально падающим монохроматическим светом с длиной волны = 500 нм на экране получилась дифракционная картина, на которой второй главный максимум удален от центрального максимума на 0,6 м. Чему равна постоянная d решетки? Вариант 13 1. Оптическая разность хода двух волн, прошедших одинаковое расстояние L, если одна распространялась в вакууме, а другая - в среде с показателем преломления n, равна … 1) 0 2) L(n-1)3)Ln 4) L/n 2. Пучок монохроматических световых волн падает под углом 300 на находящуюся в воздухе мыльную пленку (n= 1,3). Наименьшая толщина пленки, при которой отраженные волны будут максимально усилены интерференцией, равна h = 0,1 мкм. Чему равна длина световой волны ? 3. Установка для получения колец Ньютона освещается белым светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R = 5 м. Наблюдение ведется в проходящем свете. Найти радиусы rc и rкр четвертого синего кольца (с = 400 нм) и третьего красного кольца (кр = 630 нм). 4. Дифракционная картина наблюдается на расстоянии l= 4 м от точечного источника монохроматического света (λ= 500 нм). Посередине между экраном и источником света помещена диафрагма с круглым отверстием. При каком наименьшем радиусе отверстия в центре дифракционной картины будет наблюдаться минимум интенсивности? 5. При дифракции на дифракционной решетке наблюдается зависимость интенсивности излучения с длиной волны λ= 400 нм от синуса угла дифракции, представленная на рисунке (изображены только главные максимумы). Постоянная d решетки равна… 1) 1 мкм 2) 2 мкм 3) 4 мкм 4) 5 мкм 6. На щель в диафрагме падает нормально монохроматический свет с длиной волны =600 нм. Дифракционная картина проецируется на экран с помощью линзы, расстояние от линзы до экрана L = 1 м. Ширина центрального максимума на экране l = 3 см. Какова ширина щели? Вариант 14 1. На плоскопараллельную прозрачную пластинку падает световая волна. Волны 1 и 2, полученные в результате отражения от верхней и нижней поверхностей пластинки, интерферируют. Для показателей преломления сред выполняется соотношение n2 > n1, n1 = n3. Оптическая разность хода 21 волн 1 и 2 равна… 1) 21 = ADn1 +/2 2) 21 = (AB+BC)n2 -ADn1 3) 21 = (AB+BC)n2 - /2 4) 21 = (AB+BC)n2 -ADn1 -/2 2. В опыте Юнга отверстия освещались монохроматическим светом (= 600 нм). Расстояние между отверстиями d= 1 мм, расстояние от отверстия до экрана L = 3 м. Найти положение трех первых темных полос. 3. Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны =589 нм, падающим по нормали к поверхности пластинки. Пространство между линзой и стеклянной пластинкой заполнено жидкостью. Найти показатель преломления n жидкости, если радиус третьего светлого кольца в проходящем свете r3=3,65 мм. Радиус кривизны линзы R=10 м. 4. Плоская световая волна (λ= 600 нм) падает нормально на диафрагму с круглым отверстием, радиус которого R= 0,6 мм. На каком расстоянии от отверстия должна находиться точка наблюдения, чтобы отверстие открывало только одну зону Френеля? 5. На дифракционную решетку падает излучение с длинами волн λ1 и λ2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, при ν2 > ν1 и J2 > J1? (J– интенсивность, φ– угол дифракции). 6. Постоянная дифракционной решётки d=4 мкм. На решётку падает нормально свет с длинной волны λ=0,58 мкм. Максимумы какого наибольшего порядка дает эта решётка? Вариант 15 1. Световой луч проходит расстояние r в однородной среде с показателем преломления n = 1,5 и расстояние r0 в вакууме (n = 1). В каком из указанных ниже случае оптическая длина пути луча больше? 1) r = 6см, r0 = 0 2) r =2см, r0 = 4см 3) r = 4см, r0 = 2см 4) r = 0, r0 = 6см 2. Тонкая пластинка с показателем преломления n= 1,5 освещается светом с длиной волны = 600 нм. Свет падает на пластинку нормально. При какой минимальной толщине пластинки она будет выглядеть наиболее темной в отраженном свете? 3. Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. При наблюдении интерференционных полос в отраженном монохроматическом свете (λ=550 нм) оказалось, что расстояние между семью интерференционными полосами l = 28 мм. Чему равен угол γ клина? Свет падает перпендикулярно поверхности пленки. Показатель преломления мыльной воды n = 1,33. 4. На диафрагму с круглым отверстием радиусом r= 1 мм падает нормально параллельный пучок света длиной волны = 0,5 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно. 5. На дифракционную решетку падает излучение одинаковой интенсивности с частотами ν1 и ν2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, если ν1 > ν2 ? ( J – интенсивность, φ – угол дифракции) 6.Определите длину волны монохроматического света, падающего нормально на дифракционную решетку, имеющую 300 штрихов на 1 мм, если угол между направлениями на максимумы второго и третьего порядка составляет 12˚. Вариант 16 1. Свет падает на тонкую пленку с показателем преломления n, большим, чем показатель преломления окружающей среды. Разность хода лучей на выходе из тонкой пленки равна … 1) ВС+СD+BM +/2 2) (BC+CD) n– BM –/2 3) BC + CD – BM 4) (BC + CD)n - BM 2. На пути одного из лучей в установке Юнга расположена заполненная воздухом трубка (длиной h = 2 см) с плоскопараллельными основаниями, на экране наблюдается интерференционная картина. Затем трубка заполняется хлором, в результате происходит смещение интерференционной картины на m = 20 полос. Принимая показатель преломления воздуха n1 = 1,000276, вычислить показатель преломления хлора n2. Наблюдения проводятся со светом линии натрия ( = 589 нм). 3. На установке для наблюдения колец Ньютона был измерен в отраженном свете радиус третьего темного кольца. Когда пространство между плоскопараллельной пластинкой и линзой заполнили жидкостью, тот же радиус стало иметь кольцо с номером, на единицу большим. Определить показатель преломления жидкости. 4. Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света (= 600 нм). На расстоянии а = 0,5lот источника помещена круглая непрозрачная преграда диаметром D= 1 см. Найти расстояние l, если преграда закрывает только центральную зону Френеля. 5. Одна и та же дифракционная решетка освещается различными монохроматическими излучениями с разными интенсивностями (J– интенсивность света, φ– угол дифракции). Случаю освещения светом с наименьшей длиной волны соответствует рисунок под номером 6. Какое число n штрихов на единицу длины имеет дифракционная решетка, если зеленая линия ртути (=546,1 нм) в спектре первого порядка наблюдается под углом =1908’? Вариант 17 1. Световой луч проходит расстояние r в однородной среде с показателем преломления n = 1,5 и расстояние r0 в вакууме (n = 1). В каком из указанных ниже случаев оптическая длина пути луча меньше? 1) r0 = 3cм, r = 0 2) r0 = 1см, r = 2см 3) r0 = 2см, r = 1см 4) r0 = 0, r = 3см 2. На мыльную пленку падает белый свет под углом i = 45 к поверхности пленки. При какой наименьшей толщине h пленки отраженные лучи будут окрашены в желтый цвет ( = 600 нм)? Показатель преломления мыльной воды n = 1,33. 3. На тонкий стеклянный клин (n=1,55) падает нормально монохроматический свет. Двугранный угол между поверхностями клина = 2’. Определить длину световой волны , если расстояние между соседними интерференционными максимумами в отраженном свете равно 0,3 мм. 4. На диафрагму с круглым отверстием диаметра d= 4 мм падает нормально параллельный пучок лучей монохроматического света (=0,5 мкм). Точка наблюдения находится на оси отверстия на расстоянии b=1 м от него. Темное или светлое пятно получится в центре дифракционной картины, если в месте наблюдения поместить экран? 5. На дифракционную решетку падает излучение одинаковой интенсивности с частотами ν1 и ν2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, если ν2 > ν1 ? ( J – интенсивность, φ – угол дифракции) 6. Свет от паров натрия падает нормально на дифракционную решетку. Определить минимальную ширину l решетки, если известно, что в спектре второго порядка разрешены линии желтого дублета натрия (1= 589 нм и 2= 589,6 нм). Период решетки d= 20 мкм. Вариант 18 1. На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n1 1) 21 =ADn1 2) 21 = (AB+BC)n2 3) 21 = (AB+BC)n2 -ADn1 4) 21 = (AB+BC)n2 -ADn1 +/2 2. Расстояние между двумя щелями в опыте Юнга d=1 мм, расстояние от щелей до экрана L=3м. Чему равна длина волны , испускаемой источником монохроматического света, если ширина полос интерференции на экране ∆x =1,5 мм? 3. Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Определить толщину h воздушного слоя между линзой и пластинкой в том месте, где в отраженном свете (= 0,6 мкм) наблюдается четвертое светлое кольцо. 4. На диафрагму с диаметром отверстия D= 1,96 мм падает нормально параллельный пучок монохроматического света (= 600 нм). При каком наибольшем расстоянииbмежду диафрагмой и экраном в центре дифракционной картины еще будет наблюдаться темное пятно? 5. Имеются 4 решетки с различными постоянными d, освещаемые одним и тем же монохроматическим излучением различной интенсивности. На рисунке приведено распределение интенсивности света на экране, получаемое вследствие дифракции. (J – интенсивность света, – угол дифракции). Решетке с наименьшей постоянной d соответствует рисунок под номером… 6. На дифракционную решетку падает нормально монохроматическая волна (λ=600 нм). Постоянная дифракционной решетки d=4 мкм. Определить общее число дифракционных максимумов, включая центральный, которые дает эта решетка. Вариант 19 1. Световой луч проходит путь L, причем часть пути r – в однородной среде с показателем преломления n=1,5, другую часть пути r0 – в вакууме (n = 1). Оптическая длина пути луча наименьшая в случае, представленном под номером… 2. Пучок белого света падает по нормали к поверхности стеклянной пластинки толщиной d = 0,4 мкм. Показатель преломления стекла n = 1,5. Какие длины волн , лежащие в пределах видимого спектра (от 400 до 700 нм), усиливаются в отраженном свете? 3. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Расстояние между вторым и двадцатым темными кольцами l1= 4,8 мм. Найти расстояние l2 между шестым и десятым темными кольцами Ньютона. 4. На диафрагму с круглым отверстием радиусом r= 1 мм падает нормально параллельный пучок света с длиной волны λ= 0,5 мкм. На пути лучей, прошедших через отверстие, на расстоянии l= 1 м помещают экран. Сколько зон Френеля укладывается в отверстии диафрагмы? Каким будет центр дифракционной картины на экране в точке М: светлым или темным? 5. На дифракционную решетку падает излучение одинаковой интенсивности с длинами волн λ1 и λ2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, если λ1 > λ2 ? ( J – интенсивность, φ – угол дифракции) 6. На дифракционную решетку нормально падает пучок света от разрядной трубки, наполненной гелием. На какую линию 2 в спектре третьего порядка накладывается красная линия гелия (1=670 нм) спектра второго порядка? Вариант 20 1. На тонкую плоскопараллельную пластинку падает световая волна. Волна 1, прошедшая через пластинку, и волна 2, отраженная от нижней и верхней поверхностей пластинки, интерферируют. Интерференция наблюдается в проходящем свете. Для показателей преломления сред выполняется соотношение n1 = n3 < n2. Волны 1 и 2 гасят друг друга в случае, представленном под номером… 1) (AB+BC)n2 +/2=2m/2 2) ADn3=2m/2 3) (AB+BC)n2 -ADn3=(2m+1)/2 4) (AB+BC)n2 -ADn3 +/2=(2m+1)/2 2. На пути одного из интерферирующих световых лучей в опыте Юнга помещается стеклянная (n= 1,5) пластинка толщиной 6,4 мкм. Свет падает на пластинку нормально. Интерференционная картина при этом смещается на ∆m =8 полос. Какова длина волны света? 3. Между двумя плоскопараллельными стеклянными пластинками положили очень тонкую проволочку, расположенную параллельно линии соприкосновения пластинок и находящуюся на расстоянии l =75 мм от нее. В отраженном свете ( = 500 нм) на верхней пластинке видны интерференционные полосы. Определить диаметр d поперечного сечения проволочки, если на протяжении a= 30 мм насчитывается m= 16 светлых полос. 4. Дифракционная картина наблюдается на расстоянии l= 18 м от точечного источника монохроматического света (= 480 нм). На расстоянии а = 0,4lот источника помещена круглая непрозрачная преграда. Определить диаметр преграды D, если преграда закрывает только центральную зону Френеля. 5. Между точечным источником света и экраном помещена непрозрачная преграда с круглым отверстием (см. рисунок). В отверстие укладывается нечетное число зон Френеля. Распределение интенсивности I светана экране качественно правильно изображено на графике под номером… 6. На щель, вырезанную непрозрачном экране, нормально падает параллельный пучок монохроматического света с длинной волны λ, равной четверти ширины a щели. Сколько дифракционных максимумов (включая центральный) даёт эта щель? Вариант 21 1. Световой луч прошел расстояние L (геометрический путь): частьэтого расстояния L1=L/2 в однородной среде с показателем преломления n, другую часть L2=L/2 - в воздухе (nвозд =1). Оптический путь луча оказался равным l=1,25L. Показатель преломления n среды равен... 1) 1,5 2) 1,3 3) 1,2 4) 1,7 2. На мыльную пленку падает белый свет под углом i= 30° к поверхности пленки. При какой наименьшей толщине dпленки отраженные лучи будут окрашены в желтый цвет (= 585 нм)? Показатель преломления мыльной воды п = 1,33. 3. Установка для получения колец Ньютона освещается монохроматическим светом, падающим нормально. При наблюдении в отраженном свете радиусы двух соседних темных колец =4 мм, =4,38 мм. Радиус кривизны линзы R =6,4 м. Найдите порядковые номера колец и длину волны падающего света. 4. Плоская световая волна (= 400 нм) падает нормально на диафрагму с круглым отверстием диаметромd= 1 см. На каком расстоянии от отверстия должна находиться точка наблюдения, чтобы отверстие открывало две зоны Френеля? 5. На дифракционную решетку падает излучение с длинами волн λ1 и λ2. Укажите номер рисунка, иллюстрирующего положение главных максимумов, создаваемых дифракционной решеткой, при ν1 > ν2 и J1 > J2? ( J – интенсивность, φ – угол дифракции). 6. На дифракционную решетку, имеющую период d=830 нм, падает нормально белый свет. Определить разность углов =кр-ф дифракции для красной (кр=740 нм) и фиолетовой (ф=430 нм) линий в спектре первого порядка и наибольший порядок mmax для фиолетовой линии. Вариант 22 1. Световая волна из воздуха падает на плоскопараллельную пластинку толщиной d (см. рисунок). Так как n1 < n2, то оптическая разность хода 21 волн 2 и 1, отраженных от нижней и верхней граней пластинки, определяется выражением… 1) 21 = 2d(n2 – n1) 2) 21 = 2dn2 + /2 3) 21 = dn2+ 2/2 4) 21 = 2dn1 2. В опыте Юнга расстояние между щелями d = 0,8 мм, длина волны λ = 640 нм. На каком расстоянии L от щелей следует расположить экран, чтобы ширина интерференционной полосы оказалась равной ∆x = 2 мм. 3. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки, радиус кривизны линзы R= 8,6 м. Наблюдение ведется в отраженном свете. Измерениями установлено, что радиус четвертого темного кольца (считая центральное тёмное пятно за нулевое) r4 = 4,5 мм. Найти длину волны падающего света. 4. Параллельный пучок монохроматического света с длиной волны = 600 нм нормально падает на диафрагму с круглым отверстием радиусом R = 0,6 мм. В центре экрана, расположенного на расстоянии b1= 20 см от диафрагмы, наблюдается светлое пятно. На какое минимальное расстояние b, измеряемое вдоль оси перпендикулярной отверстию, нужно удалить экран, чтобы в центре его вновь наблюдалось светлое пятно? 5. На узкую щель шириной aпадает нормально плоская световая волна с длиной волны λ. На рисунке схематически представлена зависимость интенсивности света от синуса угла дифракции: Если ширина центрального максимума равна 10 см, то расстояние от щели до экрана составляет … (Учесть, что ) 1) 6 см 2) 10 см.. 3) 25 см 4) 50 см 6. На дифракционную решетку падает нормально параллельный пучок света. Для того чтобы увидеть красную линию (= 700 нм) в спектре второго порядка, зрительную трубу пришлось установить под углом = 30° к оси коллиматора. Найти постоянную dдифракционной решетки. Какое число штрихов nнанесено на единицу длины этой решетки? Вариант 23 1. На пути луча, идущего в воздухе, поставили стеклянную пластинку толщиной d= 3 мм. Показатель преломления стекла n = 1,5. Как изменилась при этом оптическая длина пути луча, если луч падает на пластинку нормально? 1) увеличится на 1,5 мм 2) уменьшится на 2 мм 3) увеличится на 4,5 мм 4) уменьшится на 4,5 мм 2. На мыльную пленку (n = 1,3), расположенную горизонтально, падает нормально пучок лучей белого света. Какова наименьшая толщина d пленки, если в проходящем свете она кажется зеленой (λ = 0,55 мкм)? 3. Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. При наблюдении интерференционных полос в отраженном свете ртутной дуги ( = 546,1 нм) оказалось, что расстояние между пятью полосами l = 2 см. Найти угол γ клина. Свет падает перпендикулярно к поверхности пленки. Показатель преломления мыльной воды n = 1,33. 4. Дифракционная картина наблюдается на расстоянии l= 6 м от точечного источника монохроматического света (λ= 666 нм). Посередине между экраном и источником света помещена диафрагма с круглым отверстием. При каком наименьшем радиусе отверстия в центре дифракционной картины будет наблюдаться максимум интенсивности? 5. Одна и та же дифракционная решетка освещается различными монохроматическими излучениями с разными интенсивностями. Случаю освещения светом с |