Главная страница

1. Роль физики пласта в процессе разработки месторождений нефти и газа


Скачать 214.5 Kb.
Название1. Роль физики пласта в процессе разработки месторождений нефти и газа
Дата02.06.2022
Размер214.5 Kb.
Формат файлаdocx
Имя файлаFiz_plast_ekz.docx
ТипДокументы
#565806
страница6 из 6
1   2   3   4   5   6

жёсткостьЖёсткостью называется суммарное содержание растворённых солей двухвалентных катионов: кальция, магния и железа.

Жёсткость различают временную (карбонатную) и постоянную(некарбонатную). Временная жёсткость или карбонатная (Жк) обусловлена содержанием в воде карбонатов или гидрокарбонатов двухвалентных металлов: кальция, магния, железа.

4.Природные воды в зависимости от содержания в них двухвалентных катионов кальция, магния, железа подразделяются на следующие группы:

· очень мягкая вода – до 1,5 мг-экв/л;

· мягкая вода – 1,5–3,0 мг·-экв/л;

· умеренно жёсткая вода – 3,0–6,0 мг-экв/л;

· жёсткая вода – более 6 мг-экв/л.

Жесткость пластовой воды и группа пластовой воды по жесткости определяются экспериментально-расчётным путём.

Временную (карбонатную) жёсткость можно устранить термическим методом, длительным кипячением или химическим методом – добавлением гидроксида кальция Са(ОН)2. В обоих случаях выпадает в осадок карбонат кальция СаСО3.

Постоянную жёсткость устраняют химическим способом с помощью добавления соды или щёлочи.

5.Вязкость воды в пластовых условиях зависит от температуры и минерализации. С возрастанием минерализации пластовых вод вязкость их возрастает.

Наибольшую вязкость имеют воды хлоркальциевого типа воды. Вязкость их приблизительно в 1,5–2 раза больше вязкости чистой воды (рис. 4.2). С возрастанием температуры вязкость пластовых вод уменьшается. Влияние давления на величину вязкости пластовых вод проявляется двояко.

6.Коэффициент сжимаемости пластовой воды характеризует относительное изменение объёма воды при изменении давления на единицу.

61. Нефть как комплекс углеводородов.

Нефть

-это горючая маслянистая жидкость от светло-желтого и зеленовато-желтого до темно-коричневого и черного цвета со специфическим запахом, распространенная в осаадочной оболочке Земли.

-это сложная смесь углеводородов разных классов, главным образом жидких и неуглеводородных компонентов.

В тесной связи с химическим составом нефти находятся ее физико-химические свойства в пластовых условиях, которые определяют закономерности движения ее в пласте.

Химическим составом нефти обусловлены некоторые особенности эксплуатации нефтяных месторождений. Например, одни из нефтей содержат больше парафина, смол и поверхностно-активных веществ, другие меньше. В зависимости от этого эксплуатация месторождения будет в той или иной мере осложнена из-за отложения парафина в трубах и образования водонефтяных эмульсий, которые необходимо разрушать. Поэтому химический состав нефти и ее физико-химические свойства необходимо знать с начала эксплуатации залежи.

По элементарному составу многие нефти более чем на 99% состоят из углерода и водорода. В небольших количествах в нефти содержатся кислород, азот, сера и в очень малых количествах хлор, йод, фосфор, мышьяк, калий, натрий, кальций, магний, а иногда радий.

Наиболее широко в нефти представлены углеводороды метанового или парафинового ряда общего состава СnН2n+2 и полиметиленовые углеводороды или нафтены (СnН2n). Кроме парафинов и нафтенов, одна из постоянных составных частей нефти — ароматические углеводороды, но они весьма редко бывают главной ее составной частью. Большой интерес для промысловой практики представляют некоторые другие классы органических соединений, на присутствие которых указывает содержание в нефти кислорода, азота, серы и других элементов. Количество этих соединений (нафтеновые кислоты, асфальтены, смолы и т. д.) в составе природных нефтей незначительно. Но кислород и серосодержащие вещества существенно влияют на свойства поверхностей раздела в пласте, на распределение жидкостей и газов в поровом пространстве и, следовательно, на закономерности движения жидкостей и газов. Это обусловливается сравнительно высокой поверхностной активностью большинства кислород- и серосодержащих соединений нефти, так как в результате адсорбции на поверхности поровых каналов и других поверхностях раздела изменяются их свойства. С этими веществами также тесно связаны процессы, имеющие важное промысловое значение — образование и разрушение нефтеводяных эмульсий, выделение из нефти и отложение парафина в эксплуатационных трубах и в поровых каналах пласта.

Таким образом, в промысловой практике кислород, азот и серосодержащие соединения, а также парафин и церезин имеют особое значение. Рассмотрим эти соединения более подробно.

1)Кислород содержится в смолистых и кислых веществах нефти.

1.1.Нафтеновые кислоты — либо жидкие, либо кристаллические вещества, мало растворимые в воде, имеющие высокую плотность.

По химическим свойствам эти кислоты сходны с обычными карбоновыми. Со щелочами они образуют соли (нафтенаты), хорошо растворимые в воде, вступают в реакцию с окислами металлов, также образуя соли. При наличии воды и повышенной температуры нафтеновые кислоты непосредственно реагируют со многими металлами, корродируя оборудование.

Нафтеновые кислоты содержатся во всех нефтях, но содержание их незначительно — от сотых долей процента до 2%.

1.2.Содержание фенолов, жирных кислот и их производных в нефти не превышает 4—10% от содержания нафтеновых кислот, но состав их очень разнообразен.

2) Сера присутствует в нефтях и в свободном состоянии и в виде сероводорода, но в основном входит в состав различных сернистых соединений и смолистых веществ.

Из органических сернистых соединений в нефти найдены меркаптаны, сульфиды, дисульфиды и др.

Меркаптаны и сероводород наиболее активные сернистые соединения нефти кислого характера. Они вызывают сильную коррозию оборудования.

Сульфиды и дисульфиды представляют собой нейтральные жидкие вещества, не реагирующие со щелочами. Считается, что из сернистых соединений известного строения сульфиды наиболее распространены в нефти, а дисульфиды имеют вторичное происхождение и образуются в результате окисления воздухом меркаптанов.

3)Содержание асфальто-смолистых веществ в нефтях РФ колеблется в пределах 1 –40%. Наибольшее количество смол содержится в тяжелых темных нефтях, богатых ароматическими углеводородами.

Асфальто-смолистые вещества — высокомолекулярные органические соединения, в состав которых входят углерод, водород, кислород, сера и азот.

Асфальто-смолистые вещества делятся на:

1) нейтральные смолы, растворимые в легком бензине (петролейном эфире);

2) асфальтены, не растворимые в петролейном эфире, но растворимые в бензоле;

3) асфальтогеновые кислоты и их ангидриды — вещества кислого характера, не растворимые в петролейном эфире, но растворимые в бензоле.

3.1.К особенностям нейтральных смол относится их способность превращаться в асфальтены. Этот процесс может протекать самопроизвольно просто на свету, а наиболее интенсивно протекает при нагревании с одновременным продуванием воздуха.

3.2.Асфальтены по химическим свойствам близки к смолам и являются также нейтральными веществами. Они представляют собой кислородные полициклические соединения, содержащие, кроме углерода и водорода, также серу и азот.

3.3.Асфальтогеновые кислоты — смолистые вещества кислого характера. В их состав входят углерод, водород, кислород и сера (до 3%). Содержатся они в нефти в небольших количествах.

Содержание компонентов нефти выражают массовой (в процентах) или мольной концентрацией (в долях единицы). При этом обычно указывают содержание только газовых и наиболее летучих жидких компонентов (пентана, гексана и др.). Все остальные компоненты рассматривают как тяжелый нелетучий остаток.

4)Очищенный парафин представляет собой бесцветную или белую кристаллическую массу, не растворимую в воде.

Температура плавления парафина ввиду неоднородности его химического состава находится в пределах 40—60° С.

Состав и природа нефтяного парафина очень сложны, и данные о строении и свойствах углеводородов, входящих в его состав, еще далеко не полны. Установлено, что он состоит из двух групп твердых углеводородов, резко отличающихся друг от друга по свойствам, — парафинов и церезинов.

Парафинами называют углеводороды состава С17 — С35.Нефтяные церезины имеют более высокую относительную молекулярную массу (состав их С—С). При одной и той же температуре плавления церезины по сравнению с парафинами имеют более высокую плотность и вязкость. Отличаются они также и по строению кристаллов. Парафины образуют пластинки и пластинчатые ленты, переплетающиеся между собой. Кристаллы легкоплавкого парафина имеют большие размеры, чем тугоплавкого. Церезины же кристаллизуются в виде мелких игл, плохо соединяющихся между собой, и поэтому они не образуют прочных застывающих систем, как парафины. Церезин и парафин обладают различными химическими свойствами.

Физические и физико-химические свойства нефтяных парафинов, а также условия их выделения из нефти и отложения в скважинах изучены недостаточно, что задерживает усовершенствование методов борьбы с их отложениями.

62. Физические и физико-химические свойства нефти в пластовых условиях и методы их изучения.

63. Свойства нефти в пластовых условиях и на поверхности.

64. Поверхностно-молекулярные свойства системы пласт-вода-нефть-газ.

Нефтяной пласт представляет собой огромное скопление капиллярных каналов и трещин, поверхность которых очень велика. Мы уже видели, что иногда поверхность поровых каналов 1м3 нефтесодержащих пород составляет несколько гектаров. Поэтому закономерности движения нефти в пласте и ее вытеснения из пористой среды наряду с объемными свойствами жидкостей и пород (вязкость, плотность, сжимаемость и др.) во многом зависят от свойств пограничных слоев соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.

Более интенсивное проявление свойств пограничных слоев по мере диспергирования (дробления) тела обусловлено возрастанием при этом числа поверхностных молекул по сравнению с числом молекул, находящихся внутри объема частиц. В результате с ростом дисперсности системы явления, происходящие в поверхностном слое, оказывают все большее влияние на движение воды и газа в нефтяных и газовых коллекторах.

Поверхностные явления и поверхностные свойства пластовых систем, по-видимому, сказались также и на процессах формирования нефтяных и газовых залежей. Так, например, степень гидрофобизации поверхности поровых каналов нефтью, строение газо-нефтяного и водо-нефтяного контактов, взаимное расположение жидкостей и газов в пористой среде, количественное соотношение остаточной воды и нефти и некоторые другие свойства пласта, обусловлены поверхностными и капиллярными явлениями, происходившими в пласте в процессе формирования залежи.

Очевидно также, что важнейшую проблему увеличения нефтеотдачи пластов нельзя решить без детального изучения процессов, происходящих на поверхностях контакта минералов с пластовыми жидкостями и свойств тонких слоев жидкостей, соприкасающихся с породой.

65. Поверхностное натяжение на границе раздела фаз.

66. Смачиваемость и методы ее определения.

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – несмешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет.



Гидрофильная Гидрофобная Нейтральная

Интенсивность смачивания характеризуется величиной краевого угла смачивания Θ, образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью.

  • =180- поверхность полностью гидрофобна.

Величина   , если исключить влияние силы тяжести, не зависит от размеров капли и определяется лишь молекулярными свойствами поверхности твердого тела и соприкасающихся фаз. Поэтому, исходя из теории поверхностных явлений, можно установить связь краевого угла смачивания   с поверхностным натяжением между твердым телом и жидкостью. Например, поверхность должна лучше смачиваться той жидкостью, которая обладает меньшей разностью полярностей между твердым телом и жидкостью, т. е. меньшей величиной поверхностного натяжения на их разделе.

Высокополярные жидкости, т. е. жидкости с высоким поверхностным натяжением, хуже смачивают твердую поверхность, чем жидкости малополярные (т. е. обладающие меньшим поверхностным натяжением). Например, такая высокополярная жидкость, как ртуть, смачивает только некоторые металлы; вода – жидкость, менее полярная, чем ртуть, поэтому вода смачивает, кроме металлов, многие минералы и кристаллические соли.

По величине угла избирательного смачивания, образующегося при контакте воды, нефти и породы, наряду с другими параметрами можно судить о качестве вод и их отмывающей и нефтевымывающей способности. Лучше отмывают нефть воды, хорошо смачивающие породу. Поэтому изучению явлений смачивания в нефтепромысловом деле уделяется очень большое внимание.

67. Роль капиллярных сил при добыче газа, конденсата и нефти.

Молекулярные силы взаимодействия между различными веществами, насыщающими горные породы, играют важную роль в процессах извлечения нефти и газа из недр. Капиллярные силы представляют собой одну из форм проявления межмолекулярных сил.

Характер молекулярного взаимодействия зависит от природы вещества. При нормальных расстояниях между молекулами вещества (при нормальных давлении и температуре) взаимодействие молекул выражается в притяжении их друг к другу. При сильном сближении молекул возникают силы отталкивания.

Поверхностное натяжение (σ) характеризует избыток свободной энергии, сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз или работу образования новой поверхности в изотермических условиях:

 .

Величину коэффициента поверхностного натяжения можно определить как величину работы, необходимой для образования 1 см2 новой поверхности (Дж/м2, Н/м).

Поверхностное натяжение является свойством не отдельно взятого вещества, а свойством поверхности контакта двух или большего числа веществ. Можно говорить, например, о поверхностном натяжении воды на границе с воздухом или на границе с нефтью, однако без указания контактирующего с водой вещества понятие поверхностного натяжения теряет смысл. Одно и то же вещество может иметь различные величины поверхностного натяжения на границе с различными веществами. Так, вода на границе с воздухом имеет поверхностное натяжение 75·10

3Н/м, а на границе с нефтью – около 30·103Н/м.

По поверхностному натяжению пластовых жидкостей на различных поверхностях раздела можно судить о свойствах соприкасающихся фаз, о закономерностях взаимодействия жидких и твердых тел, о процессах адсорбции, о количественном и качественном составе полярных компонентов в жидкости, об интенсивности проявления капиллярных сил и т. д. Влияние температуры и давления на поверхностное натяжение жидкостей можно установить исходя из молекулярного механизма возникновения свободной поверхностной энергии и энергетической сущности поверхностного натяжения.

Количественные изменения величины поверхностного натяжения зависят от многих дополнительных факторов: химического состава нефти, состава газа (рис. 5.4, кривая 3), количества растворенного газа, количества и природы полярных компонентов и других факторов.

Поверхностное натяжение нефти на границе с водой или другой жидкостью зависит от следующих факторов.

1. От количества имеющихся в ней поверхностно-активных компонентовасфальтенов, смолистых веществ, нафтеновых кислот. Нефть, содержащая наименьшееколичество указанных веществ, имеет наибольшую величину поверхностного натяжения на границе с водой. Наоборот, нефти, содержащие наибольшее количество поверхностно-активных веществ, имеют наименьшую величину поверхностного натяжения на границе с водой. Эта закономерность объясняется физическим смыслом величины поверхностного натяжения.

2. От природы другой жидкости, с которой нефть соприкасается. Например, при соприкосновении с водой в большинстве случаев поверхностное натяжение нефти меньше, чем при соприкосновении с воздухом. Чем выше плотность нефти, тем больше ее поверхностное натяжение на границе с воздухом и тем меньше на границе с водой.

Коэффициент поверхностного натяжения (σ) зависит от давления, температуры, газового фактора, свойств флюидов. Поверхностное натяжение с увеличением давления понижается, тем сильнее, чем ниже температура. Поверхностное натяжение уменьшается с повышением температуры. Общий характер изменения величины поверхностного натяжения с изменением давления (рис. 5.4) и температуры для нефти такой же, как и у воды.

Влияние этих факторов на величину поверхностное натяжение (σ) можно установить исходя из молекулярного механизма возникновения свободной поверхностной энергии и энергетической сущности поверхностного натяжения. С увеличением давления величина (σ) жидкости на границе с газом понижается. С повышением температуры происходит ослабление межмолекулярных сил и величина поверхностного натяжения чистой жидкости (чистой воды) на границе с паром уменьшается.

68. Капиллярное давление и методы его определения.
1   2   3   4   5   6


написать администратору сайта