Главная страница
Навигация по странице:

  • Режим прямого запирания

  • 30. Структура и ВАХ тиристора-диода.

  • 32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.

  • 36. Построение мощных переключающих элементов на основе ПТ. Преимущества и недостатки ПТ.

  • 38. Временные диаграммы выключения IGBT и зависимость напряжения открытого транзистора от температуры.

  • 37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором ( IGBT ), принцип действия, преимущества и недостатки.

  • IGBT - менее надёжен

  • Силовая электроника шпорки. 1. Силовая электроника, определение, современное состояние и основные направления развития. Силовая электроника


    Скачать 9.35 Mb.
    Название1. Силовая электроника, определение, современное состояние и основные направления развития. Силовая электроника
    АнкорСиловая электроника шпорки.docx
    Дата17.02.2017
    Размер9.35 Mb.
    Формат файлаdocx
    Имя файлаСиловая электроника шпорки.docx
    ТипДокументы
    #2800
    страница5 из 9
    1   2   3   4   5   6   7   8   9

    33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.

    В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).



    Режим прямого запирания

    При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

    Восстановление запирающих свойств осуществляется за счет приложения к тиристору обратного напряжения. Величина tв определяет время, в течение которого происходит полное рассасывание носителей заряда в базовых слоях ранее проводившего тиристора при приложении обратного напряжения, по окончании которого к прибору может быть вновь приложено напряжение в прямом направлении без опасения его самопроизвольного отпирания. Процесс восстановления запирающих свойств происходит за счет двух факторов: протекания обратного тока через тиристор, при котором отводится основная часть носителей заряда, накопленных в базах прибора .и рекомбинации оставшихся носителей заряда.
    30. Структура и ВАХ тиристора-диода.

    тиристоры-диоды — являются эквивалентом встречно-параллельного соединения тиристора и диода.

    Тиристор с обратной проводимостью (тиристор-диод)

    Тиристор подобен обычному тиристору, с которым параллельно включен диод в обратном направлении. Применяется технология несимметричных тиристоров с их преимуществами и устраивается в структуре интегральный антипараллельный диод, изолированный от центральной секции прорезью или диффузионным защитным кольцом.



    Рис 2. ВАХ асимметричного тиристора (кривая1) и тиристора-диода (кривая 2)



    32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.

    Требования, предъявляемые к параметрам управляющих импульсов, определяются типом тиристора, схемой, в которой используется тиристор, и режимом его работы. Для надежного включения тиристора необходимо обеспечить такие значения тока управления и напряжения на управляющем электроде, которые соответствуют области гарантированного включения тиристора с учетом максимально допустимых значений тока, напряжения и пиковой мощности, выделяемой на управляющем электроде

    Генератор запускающих импульсов — источник периодической последовательности импульсных сигналов, возбуждающих формирователь, состоит из задающего генератора и блоков внешнего запуска, вывода синхронизирующих импульсов, преобразования, В отдельных измерительных генераторах, могут отсутствовать некоторые из названных элементов или встретиться дополнительные. Генератор запускающих импульсов работает как в режиме самовозбуждения, так и в режиме внешнего запуска.

     http://www.support17.com/art/img8172.jpg

    Рис. 1. Охарактеризуем кратко составные части генератора запускающих импульсов.

    Задающий генератор вырабатывает напряжение, частота которого, регулируемая в определенных пределах, задает частоту следования выходных импульсов измерительного генератора.

    36. Построение мощных переключающих элементов на основе ПТ. Преимущества и недостатки ПТ.

    Полевой транзистор - это полупроводниковый прибор, в котором ток основных носителей , протекающих через канал, управляется электрическим полем. Основа такого транзистора - созданный в полупроводнике и снабжённый двумя выводами (исток и сток) канал с электропроводностью n - или p - типа. Сопротивлением канала управляет третий электрод - затвор, соединённый с его средней частью p - n переходом.
    Поскольку ток канала обусловлен носителями только одного знака, ПТ относят к классу униполярных транзисторов.



    Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

    На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

    По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

    Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.

    Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

    Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

    В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

    Преимущества

    Первое преимущество полевого транзистора очевидно: поскольку он управляется не током, а напряжением (электрическим полем), это значительно упрощает схему и снижает затрачиваемую на управление мощность.

    Второе преимущество полевого транзистора можно обнаружить, если вспомнить, что в биполярном транзисторе, помимо основных носителей тока, существуют также и неосновные, которые прибор «набирает», благодаря току базы. С наличием неосновных носителей связано хорошо нам знакомое время рассасываний, что в конечном итоге обуславливает задержку выключения транзистора. В полевых транзисторах нет неосновных носителей, поэтому они могут переключаться с гораздо более высокой скоростью.

    Третье преимущество обусловлено повышенной теплоустойчивостью. Рост температуры полевого транзистора при подаче на него напряжения приведет, согласно закону Ома, к увеличению сопротивления открытого транзистора и, соответственно, к уменьшению тока. Поведение биполярного транзистора более сложно, повышение его температуры ведет к увеличению тока. Это означает, что биполярные транзисторы не являются термоустойчивыми приборами. В них может возникнуть очень опасный саморазогрев, который легко выводит транзистор из строя. Термоустойчивость полевого транзистора помогает разработчику при параллельном соединении приборов для увеличения нагрузочной способности. Можно включать параллельно достаточно большое число MOSFEТов без выравнивающих резисторов в силовых цепях и при этом не опасаться рассимметрирования токов, что очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности, и об этом мы поговорим чуть позже.

    Последнее преимущество полевого транзистора связано с его тепловыми свойствами — полное отсутствие вторичного пробоя. Это преимущество позволяет эффективнее использовать полевой транзистор по передаваемой мощности. На рис.2 обозначены области безопасной работы мощного биполярного и полевого транзисторов, максимальные токи и напряжения которых выбраны примерно одинаковыми.

    Недостатки

    Во-первых, полевой транзистор в открытом состоянии имеет, пусть небольшое, но все же активное сопротивление. Это сопротивление мало только у транзисторов с допустимым напряжением «сток-исток» не более 250—300 В, то есть составляет десятки милли-ом. Далее, с повышением допустимого напряжения «сток-исток», наблюдается значительный рост сопротивления в открытом состоянии. Это обстоятельство заставляет разработчика соединять приборы параллельно, ограничивать мощность, приходящуюся на один транзистор, то есть работать «с недогрузкой», тщательно прорабатывать тепловой режим.

    Второй недостаток полевого транзистора связан с технологией его изготовления. До настоящего времени технологически не удается изготовить мощный полевой транзистор без некоторых паразитных элементов, одним из которых является паразитный биполярный транзистор, который показан на рис. 3.


    Рисунок 3- Паразитные элементы в составе полевого транзистора.

    38. Временные диаграммы выключения IGBT и зависимость напряжения открытого транзистора от температуры.



    Во многом решая проблему высоковольтных применений, IGBT тоже имеют врожденный дефект, и он носит название «хвост» (tail). Этот эффект объясняется наличием остаточного тока коллектора после выключения транзистора из-за конечного времени жизни неосновных носителей в области базы PNP-транзистора (см. рис. 2). Поскольку база недоступна, ускорить время выключения схемными методами нельзя.



    Кроме того, падение напряжения на открытом транзисторе зависит от температуры, причем зависимость эта - положительная для MOSFET и отрицательная для IGBT. На графике рис. 1 приведена зависимость напряжения открытого транзистора для двух IGBT-транзисторов с разным быстродействием и MOSFET-транзистора, имеющего аналогичный размер кристалла . Ввиду большей стойкости MOSFET к лавинному пробою, 500-вольтовый полевой транзистор сравнивается с IGBT, рассчитанным на напряжение 600 В.

    37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (IGBT), принцип действия, преимущества и недостатки.

    Структура IGBT

    Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.

    условное обозначение igbt схема соединения транзисторов в единой структуре igbt

    рис. 1. Условное обозначение IGBT

    рис. 2. Схема соединения транзисторов в единой структуре IGBT

    IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор).

    Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.

    Биполярные транзисторы с изолированным затвором (IGBT) — полупроводниковые компоненты, которые являются гибридом МОП-транзистора и биполярного транзистора. Они имеют вертикальную структуру, которую мы уже встречали в предыдущих компонентах. IGBT является, по сути, биполярным /?-и-р-транзистором, ток на базу которого подаётся с паразитного полевого транзистора между коллектором и базой. На Рис. 7.32 изображена эквивалентная схема, учитывающая паразитные элементы внутри IGBT. Конструкция у него такая же, как у и-канального МОП-транзистора, только с дополнительным слоем р+. Этот дополнительный ^-«-переход является последовательным диодом, блокирующим внутренний диод МОП-транзистора.

    МОП-транзисторы имеют довольно большое сопротивление rDS(ON) при номинальном напряжении выше 500 В. По этой причине сильно возрастают потери проводимости по сравнению с биполярными транзисторами с тем же номинальным напряжением. К тому же потери проводимости МОП-транзистора возрастают с ростом температуры в связи с увеличением сопротивления в открытом состоянии.

    Слой р+ в IGBT инжектирует неосновные носители заряда в эпитаксиальный обеднённый слой n—, что улучшает проводимость области дрейфа и—. Этот эффект подобен эффекту, возникающему в биполярных транзисторах. Такая модуляция проводимости слоем р+ способствует тому, что падение напряжения на транзисторе в открытом состоянии относительно постоянно во всей области рабочих напряжений.



    Рис. 7.32. Эквивалентная схема, учитывающая паразитные элементы внутри IGBT

    Р-n-р-транзистор в IGBT полностью не насыщается, поэтому падение напряжения на нём в открытом состоянии никогда не бывает ниже падения напряжения на одном диоде и в типичных случаях составляет 1.0...3.0 В. Время запирания у IG ВТ намного лучше, чему биполярного транзистора, потому что в данном случае отсутствует накопление заряда, вызванное эффектом насыщения. Поток электронов в IGBT прекращается сразу же, как только снимается напряжение с затвора, но ток в дрейфовой области продолжает течь, пока не рекомбинируют все дырки. Базовый переход р-л-р-транзистора не имеет внешнего подключения, поэтому нет возможности создавать отрицательный ток базы, чтобы выводить из дрейфовой области неосновные носители заряда в процессе запирания. Вследствие этого при запирании возникает небольшой остаточный ток.

    достоинства IGBT
    1. при использовании на рабочее напряжение свыше 300v IGBT - дешевле
    2. IGBT - имеют более высокую крутизну - нужно меньше энергии для их открывания/закрывания
    3. IGBT-имеют меньше значение паразитных емкостей
    4. IGBT-более радиационностойкие

    недостатки IGBT
    1. MOSFET - в открытом состоянии как резистор, который может быть очень маленьким, например, 1mOhm и при токе в 100А через него рассеиваемая мощность будет всего 10Watt, на IGBT при таком токе падение напряжения будет минимум 2v поэтому рассеиваемая мощность будет 200Watt.-сравни 10W и 200W
    2. IGBT - может работать только в импульсном режиме включено/выключено и не может работать в линейном режиме как MOSFET
    3. IGBT - имеет более высокие коммутационные потери чем MOSFET и не может работать на таких же высоких частотах как MOSFET
    4. IGBT - менее надёжен - менее устойчив к перегрузкам по току и напряжению по сравнению с MOSFET, -при перегрузках по току и в случае лавинного пробоя в IGBT выделяется большая мощность при меньшем размере кристала и следовательно меньшим запасом теплоёмкости, не все IGBT в отличие от MOSFET могут работать в режиме лавинного пробоя(ораничения выходного напряжения), IGBT - более подвержены к выходу из строя из-за термоциклирования, IGBT - менее помехоустойчивые.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта