Главная страница
Навигация по странице:

  • Принцип работы данной

  • 66. Основные схемы АИР без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.

  • Силовая электроника шпорки. 1. Силовая электроника, определение, современное состояние и основные направления развития. Силовая электроника


    Скачать 9.35 Mb.
    Название1. Силовая электроника, определение, современное состояние и основные направления развития. Силовая электроника
    АнкорСиловая электроника шпорки.docx
    Дата17.02.2017
    Размер9.35 Mb.
    Формат файлаdocx
    Имя файлаСиловая электроника шпорки.docx
    ТипДокументы
    #2800
    страница8 из 9
    1   2   3   4   5   6   7   8   9

    61. Структурные схемы систем управления регулируемыми выпрямителями и ИВС, основные узлы и их реализация.

    1) управление ключевыми элементами силовой части преобразователя, осуществляющими процесс преобразования электроэнергии;

    2) регулирование выходных параметров преобразователя;

    3) включение, отключение преобразователя и распределение электроэнергии между отдельными потребителями;

    4) управление защитными устройствами преобразователя и его компонентов;

    5) выдачу информации о работе преобразователя при использовании его в автоматизированной системе электролита ни я.

    Систему контроля работоспособности преобразователя и ею компонентов также иногда относят к системе управления.

    К основной части относятся функциональные узлы и элементы, которые обеспечивают управление нелинейными элементами (например, тиристорами), выполняющими непосредственно функции преобразования и регулирования параметров электрической энергии. При дальнейшем изложении под СУ в большинстве случаев понимается ее основная часть.

    В тиристорных преобразователях основная функция СУ заключается в формировании по определенной программе управляющих импульсов на управляющих электродах тиристоров схемы. Требования, предъявляемые к параметрам управляющих импульсов, определяются типом тиристора, схемой, в которой используется тиристор, и режимом ею работы. Для надежного включения тиристора необходимо обеспечить Какие значения тока управления и напряжения на управляющем электроде, которые соответствуют области гарантированною включения тиристора с учетом максимально допустимых значений тока, напряжения и пиковой мощности, выделяемой на управляющем электроде .

    В зависимости от схемы, в которой используются тиристоры, управляющие импульсы могут иметь различную форму и длительность.

    В самом общем виде структуры СУ выпрямителей, зависимых инверторов и других видов тиристорных преобразователей можно разделить на две группы: многоканальные и одноканальные. В многоканальных структурах СУ регулирование фазы управляющих импульсов (т. е. угла управления) производится в каждом канале управления. Число таких каналов обычно равно числу тиристоров схемы или числу ее фаз. В одноканальных структурах СУ регулирование фазы управляющих импульсов производится в одном общем для всех фаз канале с последующим распределением импульсов по тиристорам схемы. Подобную классификацию СУ целесообразно проводить Для многофазных преобразователей, содержащих большое число тиристоров. В то же время основной принцип этой классификации справедлив и для однофазных схем.

    хня2.pngхня2.png

    Рис. 5.1. Система управления однофазного выпрямителя:

    а—структурная схема, б—диаграммы напряжений на входе фазосдвигающих устройств и диаграммы управляющих импульсов.

    Наиболее распространенной структурой СУ выпрямителей является многоканальная. Пример СУ с такой структурой для тиристорного выпрямителя, выполненного по однофазной схеме со средней точкой, приведен на рис. 5.1, а. Принцип работы данной СУ основан на формировании управляющих импульсов, следующих синхронно с сетевым напряжением иАВи сдвинутых относительно этого напряжения по фазе на угол а. В выпрямителях с регулированием по выходному напряжению (рис. 5.1,6) угол а обеспечивается таким, чтобы среднее значение выпрямленного напряжения Udмало отличалось от заданного при различных возмущениях, например колебаниях сетевого напряжения иАВ.

    Привязка импульсов к сетевому напряжению осуществляется входным устройством ВУ. Функции ВУ в данной СУ может выполнять трансформатор со средней точкой, вторичные полуобмотки которого создают два синусоидальных напряжения, сдвинутых между собой на угол к. Напряжения с каждой
    63. Автономные инверторы тока (АИТ), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.

    Автономный инвертор тока UZ преобразует постоянный ток в трехфазный переменный с частотой 50 Гц. На входе и выходе инвертора установлены автоматические выключатели QF1, QF2, служащие для подключения к источнику питания и к нагрузке. Синусоидальность переменного тока обеспечивается за счет компенсирующих, конденсаторов С1 - СЗ, установленных на выходе инверторного моста.
    Различают автономные инверторы тока и напряжения. Инвертор тока получает энергию от источника питания через сглаживающий фильтр большой индуктивности. Инвертор напряжения подключается непосредственно к источнику питания с малым внутренним сопротивлением.
    Модель описанного стабилизированного автономного инвертора тока была построена на базе аналоговой вычислительной машины ЭМУ-10.
    Рассмотрим установившийся режим работы однофазного автономного инвертора тока с нулевым выводом трансформатора ( рис. 10.53), положив, что к моменту времени t 0 тиристор VS t был закрыт, тиристор VS-i открыт, конденсатор цепи коммутации емкостью Ск заряжен так, как показано на рис. 10.53 знаками плюс и минус без скобок, трансформатор идеальный и сопротивление цепи нагрузки гн. В цепь источника постоянной ЭДС Е включен сглаживающий фильтр с индуктивностью L.

    схема автономного инвертора тока

    Рис. 4. Схема автономного инвертора тока (а). Графики (б) напряжения Utb и тока Iн на выходе инвертора

    Внешне АИТ похожи на АИН, имеют аналогичную структуру (рис. 4, а) однако процессы в них существенно различаются. Основное различие — в способе питания: на входе АИТ включен реактор Ld, индуктивность которого достаточна для поддержания тока нагрузки практически неизменным в течение полупериода выходной частоты АИТ. Таким образом, в АИТ задается мгновенное значение тока, он получает питание от источника тока. Напряжение — зависимая переменная ( рис. 4, 6). Индуктивность сглаживающего реактора Ld оказывает существенное влияние на динамические характеристики АИТ. В частности, чем меньше Ld, тем меньше всплески и провалы напряжения на выходе АИТ при скачкообразном изменении нагрузки на его выходе.

    В АИТ ключевые элементы изменяют направление тока в нагрузке (но не мгновенное значение), так что нагрузка питается как бы от источника тока, что и нашло свое отражение в соответствующей терминологии — инвертор тока Нагрузка АИТ, как правило, носит емкостной характер (на рис. 4, а конденсатор Ск), так как при индуктивной нагрузке из-за скачкообразного изменения тока возникли бы перенапряжения, нарушающие нормальную работу схемы.
    К числу достоинств АИТ относится сравнительно хорошая форма кривой выходного напряжения при наличии на выходе параллельного конденсатора. Основными недостатками АИТ являются падающая внешняя характеристика и зависимость величины и формы кривой выходного напряжения от частоты, в связи с чем обычно АИТ используется в диапазоне частот от 50 до 1000 Гц.

    62. Автономные инверторы (АИ), определение, назначение, классификация, области использования.

    Использование: преобразовательная техника, в частности построение тиристорных источников вторичного питания средней и большой мощности, в том числе и инверторных источников питания для дуговой электросварки. Сущность изобретения: автономный инвертор содержит два фильтрующих разделительных конденсатора 3 и 4 со средней точкой, две инверторных ячейки 5 и 6, состоящие из коммутирующих конденсаторов 7 и 8 и дросселей 9 и 10, тристоров 11 и 12 и обратных диодов 13 и 14, а также два выходных трансформатора 15 и 16 с первичными обмотками 17 и 18 и вторичными обмотками 19 и 20, автономную нагрузку 21 и два демпфирующих диода 22 и 23. Технический эффект - возможность регулирования выходного напряжения инвертора методом фазового регулирования, т. е. получение формы напряжения как при ШИМ, при этом коммутирующая способность инвертора не зависит о нагрузки, что позволяет работать инвертору при скачкообразных изменениях нагрузки. Кроме того, возможность фазового регулирования позволяет сформировать любую внешнюю характеристику инвертора. 2 ил. 

    Автономными инверторами называют вентильные преобразователи ПОСТОЯННОГО тока в переменный, работающие на автономную нагрузку. Появление тиристоров обусловило бурное развитие данной области преобразовательной техники. В настоящее время тиристорные автономные инверторы получают ншрокое распространение в различных областях техники, В перечень основных применений входят следующие;

    1. Стабилизированные однофазные и многофазные источники питания автономных сетей переменного тока. Они применяются в том случае, если частота переменного тока, необходимого для работы потребителей самого различного назначения, выше частоты основного энергетического источника. Для таких инверторов характерны высокие требования по жесткости выходной частоты, по стабильности и качеству выходного напряжения [П. 1, 2].

    2. Однофазные источники ровышенной частоты для термической обработки металлов (установки индукционного нагрева, завалки, плавки). Выходные частоты инверторов указанного применения изменяются в сравнительно небольших предела!: (1 :2), причем жесткие требования стабильности частоты отсутствуют. Зачастую регулирование частоты подчинено задаче поддержания неизменным выходного напряжения при изменении параметров нагрузки [Л. 3, 4].

    3. Преобразователи частоты на основе- автономных инверторов для регулирования частоты вращения двигателей переменного тока. Выходные частоты таких инверторов изменяются в широких пределах 1: 20-1: 50, одновременно с регулированием частоты должно изменяться выходное иапряж,ение инвертора. Специальным управлением инвертора, «роме регулирования частоты вращения, осуществляется реверсирование двигат В зависимости от числа коммутаций тока различают инверторы с одно – и двухступенчатой коммутацией. При одноступенчатой коммутации ток нагрузки сразу переходит на вступающий в работу тиристор, при двухступенчатой коммутации нагрузка сначала переключается во вспомогательную цепь, а затем в основную. При использовании однооперационных тиристоров схемы дополняются специальными узлами принудительной коммутации. В автономных инверторах на тиристорах полная коммутация с переключением тока с одной ветви схемы на другую выполняется в несколько этапов. Сначала происходит уменьшение прямого тока в одном из тиристоров до нуля, затем задержка приложения прямого напряжения на нем до полного восстановления запирающей способности и далее нарастание прямого тока во втором тиристоре.  

    http://edu.dvgups.ru/metdoc/gdtran/depen/elsn_tr/el_teh_preobr/metod/klochkov_up/frame/8.files/image002.gif

    63. Автономные инверторы тока (АИТ), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.

    Автономный инвертор тока UZ преобразует постоянный ток в трехфазный переменный с частотой 50 Гц. На входе и выходе инвертора установлены автоматические выключатели QF1, QF2, служащие для подключения к источнику питания и к нагрузке. Синусоидальность переменного тока обеспечивается за счет компенсирующих, конденсаторов С1 - СЗ, установленных на выходе инверторного моста.
    Различают автономные инверторы тока и напряжения. Инвертор тока получает энергию от источника питания через сглаживающий фильтр большой индуктивности. Инвертор напряжения подключается непосредственно к источнику питания с малым внутренним сопротивлением.
    Модель описанного стабилизированного автономного инвертора тока была построена на базе аналоговой вычислительной машины ЭМУ-10.
    Рассмотрим установившийся режим работы однофазного автономного инвертора тока с нулевым выводом трансформатора ( рис. 10.53), положив, что к моменту времени t 0 тиристор VS t был закрыт, тиристор VS-i открыт, конденсатор цепи коммутации емкостью Ск заряжен так, как показано на рис. 10.53 знаками плюс и минус без скобок, трансформатор идеальный и сопротивление цепи нагрузки гн. В цепь источника постоянной ЭДС Е включен сглаживающий фильтр с индуктивностью L.

    схема автономного инвертора тока

    Рис. 4. Схема автономного инвертора тока (а). Графики (б) напряжения Utb и тока Iн на выходе инвертора

    Внешне АИТ похожи на АИН, имеют аналогичную структуру (рис. 4, а) однако процессы в них существенно различаются. Основное различие — в способе питания: на входе АИТ включен реактор Ld, индуктивность которого достаточна для поддержания тока нагрузки практически неизменным в течение полупериода выходной частоты АИТ. Таким образом, в АИТ задается мгновенное значение тока, он получает питание от источника тока. Напряжение — зависимая переменная ( рис. 4, 6). Индуктивность сглаживающего реактора Ld оказывает существенное влияние на динамические характеристики АИТ. В частности, чем меньше Ld, тем меньше всплески и провалы напряжения на выходе АИТ при скачкообразном изменении нагрузки на его выходе.

    В АИТ ключевые элементы изменяют направление тока в нагрузке (но не мгновенное значение), так что нагрузка питается как бы от источника тока, что и нашло свое отражение в соответствующей терминологии — инвертор тока Нагрузка АИТ, как правило, носит емкостной характер (на рис. 4, а конденсатор Ск), так как при индуктивной нагрузке из-за скачкообразного изменения тока возникли бы перенапряжения, нарушающие нормальную работу схемы.
    К числу достоинств АИТ относится сравнительно хорошая форма кривой выходного напряжения при наличии на выходе параллельного конденсатора. Основными недостатками АИТ являются падающая внешняя характеристика и зависимость величины и формы кривой выходного напряжения от частоты, в связи с чем обычно АИТ используется в диапазоне частот от 50 до 1000 Гц.

    65. Автономные резонансные инверторы (АИР), определение, классификация, физические процессы и особенности работы.

    Резонансными называются инверторы, у которых периодический характер электромагнитных процессов в нагрузке обусловлен колебательными свойствами LC-контура инвертора. При этом возможны три варианта композиции LC-контура и нагрузки:

    • последовательное включение нагрузки в последовательный LC-контур – последовательные резонансные инверторы;

    • параллельное подключение нагрузки к L или С LC-контура;

    • подключение нагрузки параллельно к части С контура.

    Эти три вида подключения нагрузки определяют три вида резонансных инверторов:

    параллельный;• последовательно-параллельный;• последовательный. Кроме того, различают резонансные инверторы с закрытым входом, у которых индуктивность резонансного контура находится в цепи постоянного тока (на входе) инвертора, и с открытым входом, у которых эта индуктивность находится на стороне переменного тока инвертора (в выходной цепи). Простейшим типом резонансного инвертора является инвертор класса Е, содержащий всего один управляющий вентиль (транзистор). Но низкая энергетическая эффективность преобразования энергии при этом ограничивает область его применения мощностями до 100 Вт (источники питания). Тиристорные резонансные инверторы без обратных диодов более эффективно преобразуют постоянный ток в переменный и предназначены для питания постоянной или мало меняющейся нагрузки в единицы или десятки киловатт. Тиристорные резонансные инверторы с обратными диодами сложнее схем без обратных диодов, но позволяют питать нагрузку, меняющуюся в широком диапазоне, начиная от холостого хода. Предельная частота выходного напряжения в таких инверторах обычно не превышает порядка десяти килогерц для современных типов высокочастотных тиристоров. При необходимости получения более высоких частот выходного напряжения с мощностями в десятки и сотни киловатт используют схемы резонансных инверторов с удвоением или учетверением частоты либо реже многоячейковые инверторы.
    66. Основные схемы АИР без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.

    Нулевая, полумостовая и мостовая схемы последовательных резонансных инверторов показаны на рис. 2.2.2. Все они работают, как и параллельные резонансные инверторы, в режиме прерывистого входного тока. Типовые диаграммы входного тока инвертора, напряжения на конденсаторе и тока нагрузки приведены на рис. 2.2.3.



    В отличие от параллельных инверторов здесь напряжение на конденсаторе колебательного контура не спадает во время нулевой паузы, но ток нагрузки имеет прерывистый характер. Аналитическое исследование прерывистого режима работы последовательного резонансного инвертора осложнено теми же трудностями, что и у параллельного резонансного инвертора, и поэтому здесь не приводится. Да и сами эти схемы утрачивают свое доминирующее значение для создания преобразователей повышенной частоты из-за невозможности режима холостого хода и существенной зависимости режима работы от параметров нагрузки. Их потеснили схемы резонансных инверторов с вентилями обратного тока на тиристорах или на транзисторах, у которых нет ограничений, связанных с обеспечением времени на восстановление их управляющих свойств после интервала проводимости ими тока.


    1   2   3   4   5   6   7   8   9


    написать администратору сайта