ОТветы на экзамен. вопросы по физиологии!!!. 1 Структура и функции биологических мембран. Ионные каналы мембран и их особенности. Мембранноионные механизмы происхождения потенциала покоя. Электрогенез процесса возбуждения
Скачать 2.82 Mb.
|
Микроструктура и физиологические свойства сердечной мышцы. Сердце человека — четырехкамерный полый мышечный орган, состоящий из двух предсердий и двух желудочков. Правая и левая части сердца разделены перегородкой и не сообщаются между собой. Предсердия и желудочки отделены друг от друга с помощью створчатых (атриовентрикулярных) клапанов. Желудочки от магистральных сосудов (аорты и легочного ствола) отделены полулунными клапанами. Клапанный аппарат работает по принципу разности давления между полостями, которые эти клапаны разделяют. Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают два вида миоцитов — сердечные проводящие миоциты и сократительные миоциты. У кардиомиоцитов имеются внешняя оболочка (сарколемма), ядро, митохондрии и продольные сократительные элементы — миофибриллы. Характерной особенностью ткани сердечной мышцы является наличие в области вставочных дисков зон плотного прилегания мембран кардиомиоцитов — нексусов. За счет этого в области нексусов создается низкое электрическое сопротивление по сравнению с другими областями мембраны, что обеспечивает быстрый переход возбуждения с одного волокна на другое. Такое псевдосинцитиальное строение сердечной мышцы определяет ряд ее особенностей. Электрогенез миокарда. Электрокардиография. При возбуждении сердечной мышцы возникающие на ее поверхности электрические потенциалы создают в окружающих тканях динамическое электрическое поле, которое может быть зарегистрировано с поверхности тела. Регистрация биоэлектрических явлений, возникающих при возбуждении сердца, получила название электрокардиографии, а ее графическое выражение, отражающее возникновение, распространение и окончание возбуждения в различных отделах сердца,— электрокардиограммы (ЭКГ). В норме на ЭКГ различают 6 зубцов, обозначенных буквами Р, Q, R, S, Т. Интервалы между зубцами обозначают двумя буквами соответственно зубцам, между которыми они заключены. Потенциал действия кардиомиоцитов желудочков. Зубец Ротражает процесс возбуждения в миокарде предсердий. Доказано, что возбуждение правого предсердия происходит раньше левого на 0,02—0,03 с, поэтому первая половина зубца Р до вершины соответствует возбуждению правого предсердия, вторая — левого предсердия. Продолжительность его не превышает 0,11 с. Процесс реполяризации предсердий на нормальной ЭКГ не выражен. Интервал P—Qсоответствует так называемой атриовентрикулярной задержке. Его продолжительность зависит от частоты сердечного ритма, однако в норме он находится в пределах 0,12—0,20 с. Зубец Qявляется первым зубцом желудочкового комплекса, всегда обращенным книзу, и отражает процесс распространения возбуждения из атриовентрикулярного узла на межжелудочковую перегородку и папиллярные мышцы. Это наиболее непостоянный зубец ЭКГ, он может отсутствовать во всех отведениях. Глубина зубца Qв норме не превышает 1/4 зубца R Зубец Rвсегда направлен вверх. Он отражает процессы деполяризации стенок левого и правого желудочков и верхушки сердца. Зубец S, как и Q,— непостоянный отрицательный зубец ЭКГ. Он отражает несколько более поздний охват возбуждением отдаленных, базальных участков миокарда и субэпикардиальных слоев миокарда. Зубец Тотражает процесс быстрой реполяризации миокарда желудочков. Его ширина колеблется от 0,1 до 0,25 с, однако не имеет существенного значения при анализе ЭКГ. В целом желудочковый комплекс QRSTотражает процесс распространения возбуждения и прекращения его в миокарде желудочков. Ширина комплекса QRS в норме не превышает 0,1 с. Сегмент ST — отрезок времени от конца комплекса QRSдо начала зубца Т, отражающий состояние уравновешенности потенциалов всех участков миокарда (полный охват желудочков возбуждением) и период медленной реполяризации. В норме сегмент STрасположен на изоэлектри-ческой линии. За зубцом Т следует изоэлектрический интервал Т—Р, соответствующий периоду, когда все сердце находится в состоянии покоя (во время диастолы). Зубец Uпоявляется через 0,01—0,04 с после зубца Т; он имеет ту же полярность, что и зубец Т, продолжительность его не превышает 0,16 с. Его появление связывают с электрическими потенциалами, возникающими при растяжении желудочков в начальной фазе диастолы или с явлениями следовой реполяризации волокон проводящей системы сердца. Интервал Q—Т— от начала зубца Qдо конца зубца Т — соответствует электрической систоле желудочков. Его длительность зависит от ЧСС. Эта зависимость выражена формулой Базетта, по которой легко рассчитать должную величину интервала Q—T и сопоставить с фактической: Регистрация электрокардиограммыпроизводится с помощью электрокардиографа путем различных отведений от поверхности тела. Для записи ЭКГ традиционно используют три стандартных отведения по Эйнтховену: I отведение (правая рука — левая рука), II отведение (правая рука — левая нога), III отведение (левая рука — левая нога). Кроме того, в клинике используют дополнительно усиленные отведения по Гольдбергеру, грудные отведения по Вильсону и отведения по Небу. Экстрасистолия - самая распространённая форма аритмии, характеризующаяся внеочередными сокращениями сердца (экстрасистолы), обусловленными импульсами из возникшего в миокарде дополнительного очага возбуждения. Поскольку мышца сердца после каждого сокращения остаётся некоторое время невозбудимой, очередной нормальный импульс, как правило, не может вызвать систолу и возникает более длительная, чем после нормального сокращения, т. н. компенсаторная пауза. | № 16 Гемодинамическая функция сердца. Одиночный цикл сердечной деятельности. Фазовый анализ сердечной деятельности. Величина кровяного давления исостояние клапанов сердца в различные фазы сердечного цикла. Гемодинамическая функция сердца - процессы, механизмы движения крови в сердечно-сосудистой системе на основе тспользования физических законов Одиночный цикл сердечной деятельности. Фазовый анализ сердечной деятельности. Величина кровяного давления исостояние клапанов сердца в различные фазы сердечного цикла. В норме сердце человека совершает в среднем 70 уд/мин. Это означает, что один сердечный цикл длится 0,8 с. При этом длительность систолы предсердий составляет 0,1 с, длительность систолы желудочков — 0,33 с. Диастола предсердий длится 0,7 с, желудочков — 0,47 с. Таким образом, предсердия большую часть цикла (0,7 с) находятся в состоянии диастолы, а у желудочков диастола значительно меньше. Систола предсердий. Систола предсердий начинается при распространении возбуждения от синусно-предсердного узла. В процесс сокращения вовлекаются все миокардиоциты — и правого, и (чуть позже) левого предсердия. В результате сжимаются устья полых вен, впадающих в предсердия, повышается внутрипредсердное давление — в левом предсердии до 5—8 мм рт.ст., в правом — до 4—6 мм рт.ст. В результате вся кровь, которая за время диастолы предсердия накопилась в нем, изгоняется в желудочки: примерно за всю систолу предсердий (0,1 с) в желудочки дополнительно входит около 40 мл крови, т.е. около 30 % от конечно-диастолического объема. Благодаря этому, во-первых, возрастает кровенаполнение желудочков и, во-вторых создается сила, которая вызывает дополнительное растяжение сократительных кардиомиоцитов желудочков. Систола желудочков. Систолу желудочков принято делить на два периода — период напряжения и период изгнания крови, а диастолу — на три периода — протодиастолический период, период изометрического расслабления и период наполнения. Цикл систола—диастола желудочков представлен в следующем виде. Систола желудочков — 0,33 с. Период напряжения — 0,08 с: • фаза асинхронного сокращения — 0,05 с; • фаза изометрического сокращения — 0,03 с. Период изгнания крови — 0,25 с: • фаза быстрого изгнания — 0,12 с; • фаза медленного изгнания — 0,13 с. Диастола желудочков — 0,47 с. Протодиастолический период — 0,04 с. Период изометрического расслабления — 0,08 с. Период наполнения кровью — 0,35 с: • фаза быстрого наполнения — 0,08 с; • фаза медленного наполнения — 0,26 с; • фаза наполнения, обусловленная систолой предсердия,— 0,1 с. Систола желудочков занимает 0,33 с. В период напряжения повышается давление внутри желудочков, закрываются атриовентрикулярные клапаны. Это происходит в том случае, если давление в желудочках становится чуть выше, чем в предсердиях. Промежуток времени от начала возбуждения и сокращения кардиомиоцитов желудочков до закрытия атриовентрикулярных клапанов называется фазой асинхронного сокращения. В оставшиеся 0,03 с происходит быстрое повышение внутрижелудочкового давления: кровь находится в замкнутом пространстве — атриовентрикулярные клапаны закрыты, а полулунные еще не открыты. Из-за несжимаемости крови и неподатливости стенок желудочков в результате продолжающегося сокращения миокардиоцитов в полостях желудочков сердца возрастает давление. Это — фаза изометрического сокращения, в конце которой открываются полулунные клапаны. В левом желудочке это происходит при достижении давления 75—85 мм рт.ст., т.е. такого давления, которое чуть выше, чем в аорте в период диастолы, а в правом желудочке — 15—20 мм рт.ст., т.е. чуть выше, чем в легочном стволе. Открытие полулунных клапанов создает возможность изгнания крови в аорту и легочный ствол. В остальное время систолы желудочков — 0,25 с — происходит изгнание крови. В начале процесс изгнания совершается быстро— давление в выходящих из желудочков сосудах (аорте, легочном стволе) сравнительно небольшое, а в желудочках продолжает нарастать: в левом до 120—130 мм рт.ст., в правом до 25—30 мм рт.ст. Такое же давление создается соответственно в аорте и легочном стволе. По мере заполнения аорты и легочного ствола выходящей из желудочков кровью сопротивление выходящему потоку крови увеличивается и фаза быстрого изгнания сменяется фазой медленного изгнания. Диастола желудочков занимает около 0,47 с. Она начинается с периода протодиастолы: это промежуток времени от начала снижения давления внутри желудочков до момента закрытия полулунных клапанов, т.е. до того момента, когда давление в желудочках станет меньше давления в аорте и легочном стволе. Этот период длится около 0,04 с. Давление в желудочках в следующие 0,08 с продолжает очень быстро падать. Как только оно снижается почти до нуля, открываются атриовентрикулярные клапаны и желудочки наполняются кровью, которая накопилась в предсердиях. Время от закрытия полулунных клапанов до открытия атриовентрикулярных клапанов называется периодом изометрического расслабления. Период наполнения кровью желудочков длится 0,35 с. Начинается он с момента открытия атриовентрикулярных клапанов: вся кровь (около 33 мл) в фазу быстрого наполненияустремляется в желудочки. Затем наступает фаза медленного пассивного наполнения, или фаза диастазиса,— 0,26 с; в этот период вся кровь, которая поступает к предсердиям, протекает «транзитом» сразу из вен через предсердие в желудочки. В завершение наступает систола предсердий, которая за 0,1 с «выжимает» дополнительно около 40 мл крови в желудочки. Эту фазу называют пресистолической. |
| |
| |
№ 17 Основные свойства сердечной мышцы. Закон Франка-Стерлинга и его характеристика. Автоматия сердечной мышцы. Современные представления о субстрате природе автоматии. Микроструктура и физиологические свойства сердечной мышцы. Сердце человека — четырехкамерный полый мышечный орган, состоящий из двух предсердий и двух желудочков. Правая и левая части сердца разделены перегородкой и не сообщаются между собой. Предсердия и желудочки отделены друг от друга с помощью створчатых (атриовентрикулярных) клапанов. Желудочки от магистральных сосудов (аорты и легочного ствола) отделены полулунными клапанами. Клапанный аппарат работает по принципу разности давления между полостями, которые эти клапаны разделяют. Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают два вида миоцитов — сердечные проводящие миоциты и сократительные миоциты. У кардиомиоцитов имеются внешняя оболочка (сарколемма), ядро, митохондрии и продольные сократительные элементы — миофибриллы. Характерной особенностью ткани сердечной мышцы является наличие в области вставочных дисков зон плотного прилегания мембран кардиомиоцитов — нексусов. За счет этого в области нексусов создается низкое электрическое сопротивление по сравнению с другими областями мембраны, что обеспечивает быстрый переход возбуждения с одного волокна на другое. Такое псевдосинцитиальное строение сердечной мышцы определяет ряд ее особенностей. Закон Франка-Стерлинга и его характеристика. В основе гемодинамической регуляции силы сердечных сокращений лежит закон Франка—Старлинга, установленный авторами на сердечно-легочном препарате. При сохранении у животного малого круга кровообращения большой круг кровообращения был замещен искусственной системой трубок. Это позволило, с одной стороны, изменяя давление в венозном резервуаре, увеличивать или уменьшать приток крови к правому предсердию, а с другой — определять изменения объема сердца и количества крови, поступающей в сердце и вытекающей из него. Установлено, что чем больше крови притекает к сердцу во время диастолы, тем сильнее растягиваются волокна сердечной мышцы и тем сильнее оно сокращается при следующей систоле. Механизм этого явления объясняют двумя причинами: -
Следствиями закона Старлинга являются изменения параметров гемодинамики. Следствие 1. При увеличении венозного давления при неизменном артериальном возрастает сила сердечных сокращений и увеличиваются СО и МОК. Следствие 2. При увеличении артериального давления и неизменном венозном давлении возрастает сила сердечных сокращений (для преодоления возросшего сопротивления), но СО и МОК не меняются. Автоматия сердечной мышцы. Автоматизм — способность сердца сокращаться под влиянием возникающих в нем возбуждений. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера, а именно: • повышенной по сравнению с другими отделами сердца чувствительностью к влияниям гуморальной и нервной природы; • спонтанной ритмической медленной деполяризацией формирующих его элементов. Теории автоматизма. Существует несколько теорий, объясняющих происхождение автоматизма (нейрогенная, эндогенная и др.). Наиболее популярна теория диастолического поля, в соответствии с которой в начальную фазу диастолы в проводящих миоцитах регистрируется мембранный потенциал, равный —90 мВ. В диастолу метаболизм сердечной мышцы изменяется, и МП постепенно уменьшается. Степень уменьшения МП неодинакова в различных отделах сердца. Быстрее всего он уменьшается в клетках синусно-предсердного узла вследствие особенности их метаболизма. Мембранный потенциал постепенно достигает критического уровня деполяризации, вслед за которым следует ПД. Все остальные отделы сердца подчиняются возникшему ПД — возбуждению, генерируемому в водителе ритма. | № 18 Регуляции сердечной деятельности: гемодинамические, нервные и гуморальные факторы, влияющие на сердечную деятельность. Гемодинамическая регуляция. В основе гемодинамической регуляции силы сердечных сокращений лежит закон Франка—Старлинга, установленный авторами на сердечно-легочном препарате. При сохранении у животного малого круга кровообращения большой круг кровообращения был замещен искусственной системой трубок. Это позволило, с одной стороны, изменяя давление в венозном резервуаре, увеличивать или уменьшать приток крови к правому предсердию, а с другой — определять изменения объема сердца и количества крови, поступающей в сердце и вытекающей из него. Установлено, что чем больше крови притекает к сердцу во время диастолы, тем сильнее растягиваются волокна сердечной мышцы и тем сильнее оно сокращается при следующей систоле. Механизм этого явления объясняют двумя причинами: -
Следствиями закона Старлинга являются изменения параметров гемодинамики. Следствие 1. При увеличении венозного давления при неизменном артериальном возрастает сила сердечных сокращений и увеличиваются СО и МОК. Следствие 2. При увеличении артериального давления и неизменном венозном давлении возрастает сила сердечных сокращений (для преодоления возросшего сопротивления), но СО и МОК не меняются. |