сцепленное наследование. 1. Существуют правила, и даже законы генетики, объединённые под общим понятием мнимые отклонения от законов Менделя
Скачать 246.98 Kb.
|
Сцепленное наследование: два гена находятся в одной хромосоме. а) При полном сцеплении гетерозигота дает только два типа гамет б) При неполном сцеплении гетрозигота дает четыре типа гамет, но не с равной вероятностью. 3)Формула расчета частоты рекомбинации происходит формуле , где N – количество рекомбинантов, – общее количество потомков. В то же время частота рекомбинаций определяет число рекомбинаций, происходящих при образовании гамет. Частота рекомбинаций генов показывает относительное расположение сцепленных генов в хромосоме: чем дальше друг от друга находятся гены, тем выше частота рекомбинации. Это обстоятельство используется при составлении генетических карт. Условное «расстояние» между локусами (местоположениями в хромосоме) двух генов считается прямо пропорциональным частоте рекомбинации. Взаимное расположение (последовательность) локусов трёх и более генов определяется методом триангуляции. При этом сначала берутся гены с наименьшей частотой рекомбинации. Далее выбирают следующую по величине частоту рекомбинации и указывают два возможных положения нового гена; одно из этих положений будет отсеяно на следующем шаге, когда берётся третья частота. Построение генетической карты для генов A, B, C, частоты рекомбинаций между которыми составляют A – B = 6 %, B – C = 14 %, A – C = 8 %
4) Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности: гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален; каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены; гены расположены в хромосомах в определенной линейной последовательности; гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов; сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера; каждый вид имеет характерный только для него набор хромосом — кариотип. 5)Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу. Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y, белый цвет глаз w и вильчатые крылья bi, были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w; 3,5% − от кроссинговера между генами w и bi и 4,7% — между у и bi. Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w, w и bi, следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно. Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое определенное место — локус. Основным положениям хромосомной теории наследственности — парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме — соответствует однонитчатая модель хромосомы. Цитологические карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на генетической карте организма, установленное на основе частоты перекреста участков хромосом (кроссинговера), на Ц. к. х. привязано к определённому, реально существующему участку хромосомы, что служит одним из основных доказательств хромосомной теории наследственности. Для построения Ц. к. х. используют данные анализа хромосомных перестроек (вставки, делеции и др.) и, сопоставляя изменения морфологических признаков хромосом при этих перестройках с изменениями генетических свойств организма, устанавливают место того или иного гена в хромосоме. Пользуясь методом хромосомных перестроек, амер. генетик К. Бриджес составил в 1935 подробную Ц. к. х. плодовой мушки дрозофилы, наиболее полно генетически изученного организма. Гигантские хромосомы насекомых отряда двукрылых оказались самыми удобными для построения Ц. к. х., т.к. наряду с большими размерами обладают чёткой морфологической очерченностью: каждый участок этих хромосом имеет свой определённый и чёткий рисунок, обусловленный характерным чередованием по длине ярко окрашиваемых участков (дисков) и слабо окрашиваемых (междисков). Цитологическими методами легко определить отсутствие участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетическими показало, что физическое расстояние между генами в хромосомах не соответствует генетическому (видимо, частота кроссинговера неодинакова в разных участках хромосом), поэтому плотность распределения генов на цитологических и генетических картах хромосом различна. Так было установлено важное генетическое явление — неравномерность частот перекреста по длине хромосомы. Линейное расположение генов и их последовательность, установленные генетическими методами, подтверждаются Ц. к. х. Современные методы цитологии и генетики позволяют построить Ц. к. х. многих организмов, в том числе человека. |