Главная страница
Навигация по странице:

  • Понятие величины.

  • 31. Дроби величин.

  • 1 вопрос. Сложение и вычитание первого десятка. Вычитания вида а 1


    Скачать 76.25 Kb.
    Название1 вопрос. Сложение и вычитание первого десятка. Вычитания вида а 1
    Дата17.12.2018
    Размер76.25 Kb.
    Формат файлаdocx
    Имя файлаBilety.docx
    ТипРешение
    #60678
    страница4 из 5
    1   2   3   4   5
    1   2   3   4   5

    Понятие величины. 
    В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единииу при измерении величин этого рода. К величинам относят длину, массу, время, емкость (объем), площадь. Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин. При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».  На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению. Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением) и т.д. 
    На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измеренияпосредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади — тетрадь. (Удава можно измерять и в Мартышках, и в Попугаях.) До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные. Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка.). Это будет уже 3-й этап работы над знакомством с величинами. Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м •= 100 см, 1 кг = 1000 г. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин. Наиболее сложна в этом плане работа с величиной «время». Данная величина сопровождается наибольшим количеством чисто условных стандартных мер, которые не только надо запомнить (час, минута, день, сутки, неделя, месяц.), но и выучить их соотношения, которые заданы не в привычной десятичной системе счисления (сутки — 24 часа, час — 60 минут, неделя — 7 дней.). В результате изучения величин учащиеся должны овладеть следующими знаниями, умениями и навыками: 
    1. познакомиться с единицами каждой величины, получить наглядное представление о каждой единице, а также усвоить соотношения между всеми изученными единицами каждой из величин, т. е. знать таблицы единиц и уметь их применять при решении практических и учебных задач; 
    2. знать, с помощью каких инструментов и приборов измеряют каждую величину, иметь четкое представление о процессе измерения длины, массы, времени, научиться измерять и строить отрезки с помощью линейки.

    Понятие величины. 
    В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единииу при измерении величин этого рода. К величинам относят длину, массу, время, емкость (объем), площадь. Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин. При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».  На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению. Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением) и т.д. 
    На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измеренияпосредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади — тетрадь. (Удава можно измерять и в Мартышках, и в Попугаях.) До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные. Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка.). Это будет уже 3-й этап работы над знакомством с величинами. Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м •= 100 см, 1 кг = 1000 г. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин. Наиболее сложна в этом плане работа с величиной «время». Данная величина сопровождается наибольшим количеством чисто условных стандартных мер, которые не только надо запомнить (час, минута, день, сутки, неделя, месяц.), но и выучить их соотношения, которые заданы не в привычной десятичной системе счисления (сутки — 24 часа, час — 60 минут, неделя — 7 дней.). В результате изучения величин учащиеся должны овладеть следующими знаниями, умениями и навыками: 
    1. познакомиться с единицами каждой величины, получить наглядное представление о каждой единице, а также усвоить соотношения между всеми изученными единицами каждой из величин, т. е. знать таблицы единиц и уметь их применять при решении практических и учебных задач; 
    2. знать, с помощью каких инструментов и приборов измеряют каждую величину, иметь четкое представление о процессе измерения длины, массы, времени, научиться измерять и строить отрезки с помощью линейки.


    Понятие величины. 
    В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единииу при измерении величин этого рода. К величинам относят длину, массу, время, емкость (объем), площадь. Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин. При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».  На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению. Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением) и т.д. 
    На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измеренияпосредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади — тетрадь. (Удава можно измерять и в Мартышках, и в Попугаях.) До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные. Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка.). Это будет уже 3-й этап работы над знакомством с величинами. Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м •= 100 см, 1 кг = 1000 г. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин. Наиболее сложна в этом плане работа с величиной «время». Данная величина сопровождается наибольшим количеством чисто условных стандартных мер, которые не только надо запомнить (час, минута, день, сутки, неделя, месяц.), но и выучить их соотношения, которые заданы не в привычной десятичной системе счисления (сутки — 24 часа, час — 60 минут, неделя — 7 дней.). В результате изучения величин учащиеся должны овладеть следующими знаниями, умениями и навыками: 
    1. познакомиться с единицами каждой величины, получить наглядное представление о каждой единице, а также усвоить соотношения между всеми изученными единицами каждой из величин, т. е. знать таблицы единиц и уметь их применять при решении практических и учебных задач; 
    2. знать, с помощью каких инструментов и приборов измеряют каждую величину, иметь четкое представление о процессе измерения длины, массы, времени, научиться измерять и строить отрезки с помощью линейки.


    Понятие величины. 
    В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единииу при измерении величин этого рода. К величинам относят длину, массу, время, емкость (объем), площадь. Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин. При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».  На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению. Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением) и т.д. 
    На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измеренияпосредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади — тетрадь. (Удава можно измерять и в Мартышках, и в Попугаях.) До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные. Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка.). Это будет уже 3-й этап работы над знакомством с величинами. Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м •= 100 см, 1 кг = 1000 г. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин. Наиболее сложна в этом плане работа с величиной «время». Данная величина сопровождается наибольшим количеством чисто условных стандартных мер, которые не только надо запомнить (час, минута, день, сутки, неделя, месяц.), но и выучить их соотношения, которые заданы не в привычной десятичной системе счисления (сутки — 24 часа, час — 60 минут, неделя — 7 дней.). В результате изучения величин учащиеся должны овладеть следующими знаниями, умениями и навыками: 
    1. познакомиться с единицами каждой величины, получить наглядное представление о каждой единице, а также усвоить соотношения между всеми изученными единицами каждой из величин, т. е. знать таблицы единиц и уметь их применять при решении практических и учебных задач; 
    2. знать, с помощью каких инструментов и приборов измеряют каждую величину, иметь четкое представление о процессе измерения длины, массы, времени, научиться измерять и строить отрезки с помощью линейки.





    31. Дроби величин.

    Задания, требующие нахождения дробей (долей) величин и величин по заданным долям используются для выработки умения находить доли от числа и число по доле не только с опорой на наглядную модель, но и с использованием смысла понятия доля.

    Доля — это одна из нескольких равных частей величины.

    Например:6 листов составляют половину тетради. Сколько всего листов в тетради? Задача может быть решена с опорой на рассуждение: половин в тетради может быть только две. Если в каждой по 6 листов, то вся тетрадь содержит 6 • 2 = 12 (листов).

    Маленькая перемена длится 5 минут, что составляет четвертую часть большой перемены. Сколько минут длится большая перемена?

    Рассуждение: Четвертых частей может быть только 4. Если в каждой из них по 5 минут, то вся перемена 5 • 4 = 20 (мин).

    Начерти отрезок, длина которого 48 мм. Чему равна длина третьей части отрезка?

    Рассуждение:

    Третьих частей в отрезке может быть только три. 48 мм : 3 = 16 мм — длина одной третьей части.

    Начерти отрезок, пятая часть которого равна 17 мм.

    Рассуждение:

    Пятых частей в отрезке может быть только 5. Если каждая из них равна 17 мм, то весь отрезок 17 мм • 5 - 85 мм.



    написать администратору сайта