Главная страница
Навигация по странице:

  • 23. Тормозное рентгеновское излучение. Строение, принцип работы и характеристики рентгеновской трубки.

  • 24.Понятие о контрасте и контрастном рентгеновском изображении. Защита от рентгеновского излучения. Технический принцип рентгенографии и рентгеноскопии.

  • Защита от рентгеновского излучения.

  • Технический принцип рентгенографии и рентгеноскопии.

  • 25. Биофизические основы действия ионизирующих излучений на организм. Радиолиз воды.

  • 1. Звук механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом. Субъективные характеристики звука


    Скачать 111.16 Kb.
    Название1. Звук механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом. Субъективные характеристики звука
    АнкорZachet_medfizika (1).docx
    Дата04.05.2017
    Размер111.16 Kb.
    Формат файлаdocx
    Имя файлаZachet_medfizika (1).docx
    ТипДокументы
    #6960
    страница3 из 3
    1   2   3

    Измерение размеров эритроцитов методом дифракции. Для исследования биологических объектов наиболее часто используется дифракционный метод. Одним из наиболее распространенных объектов дифрактометрического исследования являются красные клетки крови. Ход исследования: Эридифрактометр предназначен для динамического контроля сдвиговой упругости живых эритроцитов (достаточно стандартной пробы крови из пальца) в гидродинамическом контуре, который моделирует круг кровообращения. Суспензию с концентрацией эритроцитов заливают в широкую буферную часть с открытой поверхностью. Через нее же можно вводить свет, добавлять и откачивать кислород, а также применять иные воздействия, например, тестировать реакцию на лекарственный препарат. Измерения проводятся в другой части контура, где луч зондирующего и весьма маломощного (менее 1 мВт) лазера пересекает тонкую оптическую кювету - плоский капилляр. Используется основное свойство дифракции Фраунгофера (в параллельных лучах). Световой пучок, пересекающий плоскость с N случайно расположенными малыми дисками одинакового диаметра, дает такую же систему концентрических колец, как и одиночный диск, только яркость изображения в N раз больше. По нему сразу можно определить диаметр диска. Если диаметры дисков немного различаются (что характерно для эритроцитов!), то кольца немного размываются, и с помощью фотометрирования можно определить распределение по размерам. Когда диски овальные, но в плоскости ориентированы одинаково, дифракционная картина состоит из системы овальных колец, развернутых на 90 градусов.

    23. Тормозное рентгеновское излучение. Строение, принцип работы и характеристики рентгеновской трубки.

    Тормозное рентгеновское излучение (рентгеновские лучи) с непрерывным энергетическим спектром - коротковолновое электромагнитное (фотонное) излучение. Диапазон частот, 3⋅10^16÷3⋅10^19 Гц, диапазон длин волн 10^-8 ÷ 10^-12 м. Образуется при уменьшении кинетической энергии (торможении, рассеянии) быстрых заряженных частиц, например, при торможении в кулоновском поле ускоренных электронов. Существенно для легких частиц электронов и позитронов. Спектр тормозного излучения непрерывен, максимальная энергия равна начальной энергии частицы.

    Рентгеновская трубка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения.
    Излучающий элемент представляет собой вакуумный сосуд с тремя электродами: катодом, накал катода и анодом.

    Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh —напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.

    http://upload.wikimedia.org/wikipedia/commons/thumb/8/89/roentgen-roehre.svg/755px-roentgen-roehre.svg.png

    Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов (характеристическое излучение). Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: описание: \sqrt \nu = a(z - b), где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки).

    24.Понятие о контрасте и контрастном рентгеновском изображении. Защита от рентгеновского излучения. Технический принцип рентгенографии и рентгеноскопии.

    Качество рентгеновского снимка, с технической точки зрения, определяется оптической плотностью почернения, контрастностью и резкостью изображения.

    Контрастность - разность плотностей почернения двух соседних участков или деталей рентгеновского снимка. В практических условиях о степени контрастности судят не по разности плотностей почернения двух соседних участков снимка, а по различию света, прошедшего сквозь отдельные участки пленки и воспринятого нашим глазом.

    Контраст, воспринимаемый нашим глазом, называется субъективным контрастом и является лишь косвенным мерилом объективного контраста, который характеризуется разностью плотностей почернения двух соседних участков снимка.

    Контрастное усиление. Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления.

    Защита от рентгеновского излучения.

    Различают три вида защиты: защита временем, расстоянием и материалом.

    Чем больше время и чем меньше доза, тем больше экспозиционная доза. Необходимо минимальное время находиться под воздействием ионизирующего излучения и на максимально возможном расстоянии от источника излучения.

    Защита материалом основывается на различной способности веществ поглощать разные виды ионизирующего излучения. Защита от альфа-излучения проста: достаточно листа бумаги или слоя воздуха толщиной в несколько сантиметров, чтобы полностью поглотить альфа-частицы, однако работая с радиоактивными источниками следует остерегаться попадания альфа-частиц внутрь организма при дыхании или приеме пищи.

    Для зашиты от бета-излучения достаточно пластин из алюминия, плексигласа или стекла толщиной в несколько см. при взаимодействии бета частиц с веществом может появиться тормозной рентгеновское излучение. Наиболее сложна защита от «нейтрального» излучения: рентгеновское и гамма-излучение, нейтроны. Эти излучения с меньшей вероятностью взаимодействуют с частицами вещества и поэтому глубже проникают в вещество.

    Технический принцип рентгенографии и рентгеноскопии.

    Одно из наиболее важных медицинских применений рентгеновского излучения – просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

    Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его назначение обратно пропорционально третьей степени энергии фотона, в чем проявляется большая проникающая способность жесткого излучения, и пропорциональна третьей степени атомного номера вещества поглотителя.

    Рентгенодиагностику используют в двух вариантах: рентгеноскопия – изображения рассматривают на рентгенолюминесцирующем экране, рентгенография – изображение фиксируется на фотопленке.

    При массовом обследовании населения широко используют вариант рентгенографии – флюорография, при которой на чувствительной малоформатной пленке фиксируется изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличении.

    Вариантом рентгенографии является метод, называемый рентгеновской томографией. Томография позволяет получать послойные изображения тела на экране электронно-лучевой трубки или на бумаге с деталями менее 2 мм при различии поглощения рентгеновского излучения менее 0.1%. Это позволяет, например, различать серое и белое вещество мозга и видеть очень маленькие опухолевые образования.

    С лечебной целью рентгеновское излучение применяют главным образом для уничтожения злокачественных образований (рентгенотерапия).

    25. Биофизические основы действия ионизирующих излучений на организм. Радиолиз воды.

    Рассматривая первичные физико-химические процессы в организме при действии ионизирующих излучений, следует учитывать две принципиально разные возможности взаимодействия: с молекулами воды и с молекулами органических соединений.

    Под действием ионизирующих излучений происходят химические превращения вещества, получившие название радиолиза. Укажем возможные механизмы радиолиза воды: Реакция с кислородом может привести к образованию гидроперекиси и перекиси водорода: Взаимодействие молекул оргсоединений с ионизирующими излучениями может образовать возбужденные молекулы, ионы, радикали и перекиси.

    Из приведенных реакция ясно, что эти высокоактивные в химическом отношении соединения будут взаимодействовать с остальными молекулами биологической системы, что приведет к нарушению мембран, клеток и функций всего организма. Ионизирующее излучение действует не только на биологический объект, подвергнутый облучению, но и на последующие поколения через наследственный аппарат клеток. Наиболее чувствительно к действию излучения ядро клетки.

    Способность к делению - наиболее уязвимая функция клетки, поэтому при облучении, прежде всего, поражаются растущие ткани. Действия ионизирующего излучения на быстрорастущие ткани используют также при терапевтическом воздействии на ткани опухоли.

    При больших дозах может наступить «смерть под лучом», при меньших – возникают различные заболевания (лучевая болезнь и др.).
    1   2   3


    написать администратору сайта