Главная страница
Навигация по странице:

  • 13. Электрический вектор сердца. Представление о дипольном эквивалентном электрическом генераторе сердца, головного мозга и мышц. Электрические биопотенциалы, их особенности.

  • Электрический вектор сердца

  • Электрокардиография (ЭКГ)

  • Электроэнцефалография

  • 16. воздействие на живые ткани электрическим полем УВЧ-частот

  • 18. Воздействие на живые ткани электромагнитным полем СВЧ-частот.

  • Применение медицине

  • Низкоинтенсивная терапия

  • 21. Медицинская поляриметрия. Оптическая активность веществ (примеры оптически активных тканей в организме человека). Строение и принцип работы поляриметра-сахариметра.

  • Оптически активные вещества

  • 22.Дифракция света на живых клетках.

  • 1. Звук механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом. Субъективные характеристики звука


    Скачать 111.16 Kb.
    Название1. Звук механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом. Субъективные характеристики звука
    АнкорZachet_medfizika (1).docx
    Дата04.05.2017
    Размер111.16 Kb.
    Формат файлаdocx
    Имя файлаZachet_medfizika (1).docx
    ТипДокументы
    #6960
    страница2 из 3
    1   2   3


    Аппарат искусственного кровообращения — специальное медицинское оборудование, обеспечивающее жизнедеятельность человека при частичной или полной невозможности выполнения функций сердца.

    Конструктивно аппарат представляет из себя систему, состоящую из консоли с насосами и блоком управления с необходимым набором датчиков и вспомогательной оснастки (инфузионные стойки, полки из нержавеющей стали, венозный зажим). На подвижной консоли устанавливаются роликовые насосы с частотой вращения роликов до 250 об/мин, что позволяет получать потоки крови от 0 до 11,2 литров в минуту. Один из насосов – артериальный – осуществляет функцию сердца, перекачивая кровь из венозной системы в артериальную. Второй насос предназначен для дренажа левого желудочка сердца, третий для отсоса крови из раны и возвращения ее в экстракорпоральный контур, четвертый и пятый насос используют для различных режимов кардиоплегии.

    12. Центрифугирование — это процесс разделения неоднородных систем на фракции под действием центробежных сил. Для осуществления процесса центрифугирования используются центрифуги.

    Лабораторные центрифуги делятся на несколько типов по размерам и месту расположения: Настольные центрифуги — это наиболее часто встречающийся тип центрифуг в лабораториях. В мировой практике настольные лабораторные центрифуги имеют массу от 1 до 100 кг. Подстольные центрифуги — довольно узкий класс центрифуг, появление которых обусловлено желанием сэкономить место в лаборатории. Высота данного класса центрифуг составляет, обычно, до 700 мм, а все органы управления расположены на верхней крышке. Стационарные центрифуги располагаются на полу в лаборатории и устанавливаются на встроенных в центрифугу домкратах. Основным параметром при центрифугировании является относительное центробежное ускорение А (безразмерная величина) — это величина, показывающая во сколько раз центробежное ускорение В в роторе центрифуги больше земного тяготения, обычно обозначаемого g. Величина А рассчитывается по следующей формуле:  А=11,18·10-7· r·n2

    где r — расстояние в мм от оси вращения ротора до точки, для которой рассчитывается центробежное ускорение n — частота вращения ротора в об./мин.

    13. Электрический вектор сердца. Представление о дипольном эквивалентном электрическом генераторе сердца, головного мозга и мышц. Электрические биопотенциалы, их особенности.

    Электрический вектор сердца: электрокардиограмма (рисунок и пояснение)

    Эквивалентный электрический генератор - это модельный генератор, более или менее близкий к истинному по конфигурации и удовлетворяющий критериям эквивалентности (они обычно сводятся к равенству полей в области измерения или же равенству собственных интегральных характеристик истинного и эквивалентного генераторов). Понятие этого генератора связано с формулированием и решением двух задач: расчет потенциала в области измерения по заданным характеристикам электрического генератора и расчет хар-к эл. ген-ра по измеренному потенциалу. Электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении. Электромиография – метод регистрации биоэлектрической активности мышц. Электроэнцефалография – метод регистрации биоэлектрической активности головного мозга.

    Биопотенциалы – это электрические потенциалы, источником которых являются живые ткани. Регистрация биопотенциалов с диагностической целью получила название электрографии. Биопотенциалы снимаются электродами не с органа, а с др. соседних тканей, в кот-ых электрические поля этим органом создаются. Биофизический подход к выяснению связи между биопотенциалами сердца и их внешним проявлением заключается в моделировании источников этих биопотенциалов.

    14.Первичное действие постоянного тока и переменными электрическими токами на организм. Механизмы гальванизации и электрофореза.

    Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм – это еще и совокупность ионов с переменной концентрацией в пространстве. Первичный механизм воздействия токов и электромагнитных полей на организм – физический. Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах. Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов в разных элементах тканей. Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенное значение имеет электрическое сопротивление тканей, прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать прохождение тока через организм. Непрерывный постоянный ток напряжением 60–80 В используют как лечебный метод физиотерапии (гальванизация). Источником тока служит двухполупериодный выпрямитель – аппарат гальванизации. Применяют для этого электроды из листового свинца толщиной 0,3–0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащиеся в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные теплой водой. Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода. Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружают конечности пациента.

    15.Электропроводимость биологических тканей для постоянного и переменного токов. Ионная проводимость. Порог неотпускающего тока

    Биологические ткани способны проводить эл ток, основными носителями заряда являются ионы. Обладают свойствами проводников(наличие свободных ионов) и диэлектриков. При пропускании эл. тока через живую ткань она имеет комплексное сопротивление имеющее омический и ёмкостный компоненты. Пропускание тока ведёт к изменению в биологических средах и имеет ответную реакцию. В действии постоянного тока имеет значение электропроводность ткани, зависящая от влажности. Сухая – 10000Ом сопротивления, влажная лучше проводит. Эффективность действия переменного эл. тока определяется амплитудой, частотой, продолжительностью. Низкочастотные токи имеют большую опасность при прохождении через сердце. При пропускании постоянного тока через живые ткани установлено, что сила тока не постоянна, а уменьшается и фиксируется на определённом уровне со временем. Измерение ёмкости биообъекта определяется поляризационной ёмкостью, возникающей в момент прохождения тока. Она отражает отношение изменения заряда объекта к изменению его потенциала при прохождении переменного тока. Порогом ощутимости тока называют наименьшую силу тока, раздражающее действие которого ощущает человек. Зависит от места и площади контакта тела с подведённым напряжением, частоты тока, индивидуальных особенностей человека. Он подчиняется закону норм. распределения со средним значением около 1мА на 50 Гц. Первичное действие пост. Тока связано с движением ионов их разделением концентраций в разных элементах тканей. Непрерывный пост.ток 60-80В используется как лечебный метод физиотерапии (гальванизация), а также для электрофореза лекарств. В-в. Действие перемен. Тока зависит от его частоты. При низких звуковых и уз частотах переменный ток, как и постоянный, раздражает биоткани. Обусловлено смещением ионов р-ров электролитов.

    16. воздействие на живые ткани электрическим полем УВЧ-частот

    При воздействии электрическим полем УВЧ отмечено, что слабые дозы повышают функцию тканей и органов, сильные - подавляют их. Наиболее чувствительна к воздействию электрического поля УВЧ ретикулоэндотелиальная система. Под влиянием электрического поля УВЧ усиленно развивается соединительная ткань, что способствует быстрому росту грануляций; повышается и активность фагоцитов. Под влиянием электрического поля УВЧ развивается активная гиперемия, которая после ряда процедур может стать стойкой. За неделю до операции необходимо прекратить процедуры, иначе операция будет кровоточивой. Проницаемость сосудов повышается, что способствует более быстрому рассасыванию экссудатов и уменьшению отечности тканей, выход фагоцитов из крови в ткани облегчается. Очень чувствительны к воздействию электрического поля УВЧ клетки вегетативных центров головного и спинного мозга и вегетативных узлов. Под его влиянием усиливается и активнее протекает обмен веществ в организме. Имеет значение влияние электрического поля УВЧ и на усиление процессов иммунитета. Необходимо указать на противовоспалительное и болеутоляющее действие электрического поля УВЧ. Кроме быстрого уменьшения отечности ткани, которая может явиться одной из причин болей, имеет значение и воздействие электрического поля УВЧ на нервные окончания, что ведет к понижению их чувствительности.

    17.Воздействие на живые ткани магнитным полем УВЧ-частот.

    Ультравысокими называют частоты от 30 до 300 МГц. УВЧ-поле - электромагнитное, но его терапевтический эффект определяется в основном электрической его компонентой. Действует на заряженные частицы. Существует методика УВЧ-индуктотермии, в которой используется преимущественно магнитная составляющая УВЧ-поля. УВЧ-индуктотермия предположительно вызывает вихревые токи в тканях с высокой теплопроводностью, что сопровождается значительным теплообразованием. УВЧ-индуктотермию применяют преимущественно для лечения заболеваний дыхательных путей.

    18. Воздействие на живые ткани электромагнитным полем СВЧ-частот.

    СВЧ - терапия - воздействие переменным электромагнитным полем сверхвысокой частоты (СВЧ) в диапазоне от 300 до 3000 МГц на живые ткани. Интенсивность излучения волн СВЧ-диапазона за счет теплового составляет всего 2 • 1013 Вт/м2. Такие частоты называют также микроволновыми. Электромагнитное поле микроволнового диапазона частот проникает в ткани на глубину от 10 до 12 см. Действие СВЧ-радиоволн на ткани организма сопровождается их нагревом за счет теплоты, выделяемой при поляризации и протекании электрического тока.

    С помощью СВЧ-радиометров можно измерить температуру в глубине тела человека. Радиоволны СВЧ-диапазона поглощаются на расстоянии, которое составляет несколько см. Чем больше в ткани воды (электролита), тем с меньшей глубины можно измерить температуру. Оптимальными для измерения глубинной температуры являются радиометры с длиной волны в свободном пространстве λ = 20 - 40 см: у более коротковолновых устройств глубина проникновения снижается до нескольких миллиметров.

    Применение медицине. Диагностика злокачественных опухолей различных органов.

    19.Воздействие ультрафиолетового излучения на организм человека. Понятие о фотобиомодификации. Низкоинтенсивный свет.

    Ультрафиолетовое излучение — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением. Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет. УФ-излучение может вызывать фотобиологические процессы в биоструктурах. УФ-излучение проникает в ткани организма на глубину до 1 мм. Поглощение УФ-излучения связано с фотохимическими реакциями и может привести к появлению эритемы (покраснение и загар). Выделяют три зоны действия УФ на организм: А - антирахитная (400-315 нм) - идет синтез витамина Д; В - эритемная (315-280 нм) возникает эритема, ожоги; С - бактерицидная (280-200 нм) - может вызывать канцерогенез, мутации, бактерицидный эффект. Последний используется в операционных и перевязочных отделениях клиник для дезинфекции помещений. Начиная с дальнего УФ, рентгеновское и гамма-излучения относят к ионизирующим. УФ-излучение применяется при проведении процедур светолечения, искусственного загара и в люминесцентных методах диагностики. Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека.

    Низкоинтенсивная терапия - это метод лечения, основанный на медицинском применении света низкой интенсивности, не вызывающего прогревания тканей более чем на 1гр Ц, от лазерных источников оптического излучения. Существует ряд лазеров, работающих в ультрафиолетовой области. Ультрафиолетовые лазеры находят своё применение в научных исследованиях. В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы, специальные кристаллы, либо свободные электроны, распространяющиеся в ондулятор.

    20.Воздействие инфракрасного излучения на организм человека.

    Инфракрасное излучение (тепловое излучение) – это вид распространения тепла, который можно сравнить с теплом от горячей печи, солнца или батареи центрального отопления. Инфракрасное излучение нашло очень широкое распространение в медицине (инфракрасные бани, стоматология, хирургия). ИК-излучение играет важную роль в теплообмене. Эффект теплового воздействия на организм зависит: от плотности потока, длительности облучения, зоны воздействия, длины волны, которая определяет глубину проникновения излучения в тело человека. Чем выше температура тела, тем больше частота ИК-лучей. Когда человек сидит перед тепловым рефлектором, он нагревается и его тело излучает тепло, если бы человек, нагреваясь, не излучал, то он бы перегрелся и получил тепловой удар. Мы постоянно подвергаемся действию ИК-лучей, это любые нагревательные приборы в повседневной жизни и в этом случае наш организм сам контролирует ситуацию.

    ИК-излучение: Улучшает состояние мышц и суставов и тканей, ИК-лучи улучшают подвижность суставов и соединительной ткани, улучшают кровоснабжение, оказывают противовоспалительное и обезболивающее действие, косметическое действие, психологическое действие.

    21. Медицинская поляриметрия. Оптическая активность веществ (примеры оптически активных тканей в организме человека). Строение и принцип работы поляриметра-сахариметра.

    Свет имеет двойственную природу, с одной стороны это электромагнитная волна, с другой – поток частиц – фотонов. В волнах колеблются не частицы, а вектора напряженности электрического поля (Е) и индукции магнитного поля (В) в направлениях, перпендикулярно друг другу и по направлению распространения волны. Если вектор Е колеблется во всевозможных направлениях, этот свет естественный, если только в одном – поляризованный. Устройство, позволяющее получить поляризованный свет из естественного называется поляризатором (П). Анализатор (А) – тот же поляризатор, необходимый для анализа поляризации.
    I = I0*cos2φ

    I0 – интенсивность света при параллельном расположении осей поляризатора и анализатора. I – интенсивность света, прошедшего через систему П – А или П – П. Косинус фи – косинус угла между осями двух устройств. Оптически активные вещества - некоторые растворы, способные поворачивать плоскость колебания поляризованного света (сахара, аминокислоты и пр.) Угол поворота (фи) зависит от рода вещества(α), концентрации раствора (С), толщины кюветы(L) φ =α*С*L. Данное свойство используют для измерения концентраций биологически важных веществ в различных жидкостях. При этом необходимо использовать поляризованный свет. Оптически активные в-ва: лимфа, ликвор и т.д.

    Поляриметр содержит: светофильтр (С), поляризатор (П), кварцевую пластинку (КП – ставится на пути не всех, а только центральных лучей), держатель для кювета с исследуемой жидкостью (ДсК), анализатор (А), окуляр (Ок – линзу для получения четкой картины). Вращением анализатора добиваются одинаковой освещенности всего поля зрения поляриметра. Это будет тогда, когда ось анализатора делит угол между поляризатором и «кварцем» пополам.

    Сначала измеряется угол поворота фи для растворов известной концентрации. До того как поставить кювету с раствором в поляриметре добиваются одинаковой освещенности всего поля зрения, и по нониусу опред. Угол – положение анализатора фи1 (до 10ых долей гр). Затем ставят кювету и делают то же самое – опред. Фи2 для одинаковой освщенности всего поля зрения. Угол поворота находят как разность: φ = φ2 – φ1 (с учетом знака углов). Проделав такие измерения дл различных известных концентр., далее строят градуированный график φ = φ(С). Затем опред. Угол поворота для раствора с неизвестной концентрацией, по построенному графику находят неизвестную концентрацию. В результате измерений эксперемент. точки обычно не ложатся на прямую линию. Для построения графика следует по кажд. концетр. Опред. Угол вращения – затем вычислить его среднее значение и уже по этому среднему значению построить график φ = φ(С)

    22.Дифракция света на живых клетках. Измерение размеров эритроцитов методом дифракции света.

    Дифракция - огибание светом препятствий. Дифракция тесно связана с явлением интерференции.  
    Явление дифракции света объясняется:
    каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны (принцип Гюйгенса - Френеля).

    Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L

    Л.

    Дифракционная решетка - оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм.

    Если ширина прозрачной щели (или отражающих полос) а, а ширина непрозрачных промежутков (или рассеивающих свет полос) b, то величина d = а + b называется периодом решетки.
    1   2   3


    написать администратору сайта