Вирусология. микра. 12. Морфология вирусов. Классификация и таксономия вирусов
Скачать 31.94 Kb.
|
12. Морфология вирусов. Классификация и таксономия вирусовВирусы – микроорганизмы, составляющие царство Vira. Отличительные признаки: 1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК); 2) не имеют собственных белоксинтезирующих и энергетических систем; 3) не имеют клеточной организации; 4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время); 5) облигатный паразитизм вирусов реализуется на генетическом уровне; 6) вирусы проходят через бактериальные фильтры. Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса). По форме вирионы могут быть: 1) округлыми; 2) палочковидными; 3) в виде правильных многоугольников; 4) нитевидными и др. Размеры их колеблются от 15–18 до 300–400 нм. В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид. Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур. Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил. ДНК может быть: 1) двухцепочечной; 2) одноцепочечной; 3) кольцевой; 4) двухцепочечной, но с одной более короткой цепью; 5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями. РНК может быть: 1) однонитевой; 2) линейной двухнитевой; 3) линейной фрагментированной; 4) кольцевой; 5) содержащей две одинаковые однонитевые РНК. Вирусные белки подразделяют на: 1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации; 2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный; 3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции. Среди белков суперкапсидной оболочки выделяют: а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой); б) ферменты (могут разрушать мембраны); в) гемагглютинины (вызывают гемагглютинацию); г) элементы клетки хозяина. Вирусы классифицируются на те, которые содержат ДНК (вирус простого герпеса ) и те, что содержат РНК ( вирус иммунодефицита человека ). По структуре капсомеров. Изометрические (кубические), спиральные, смешанные. По наличию или отсутствию дополнительной липопротеидной оболочки За клетками-хозяевами Наиболее применяемая в настоящее время классификация вирусов предложенная лауреатом Нобелевской премии Дэвидом Балтимор . Она построена на типе нуклеиновой кислоты, которая используется вирусом для переноса наследственного материала, и на том, каким путем происходит ее экспрессия и репликация. Стоит отметить, что такая классификация не отражает филогенетические связи между видами вирусов, так как вирусы, согласно общепринятым сейчас взглядом, имеют механизмы происхождения, отличные от всех других организмов. В отличие от клеточных организмов, генетическая информация которых хранится в виде двухцепочечной ДНК , геном вируса может сохраняться как в виде двух-, так одноцепочечныхнуклеиновых кислот . При этом этой кислотой может быть как ДНК , так и РНК , матричная форма которой (м-РНК) используется в клетках как промежуточный продукт при трансляции генетической информации в процессе синтеза протеинов . РНК-геномы вирусов могут быть закодированы в двух противоположных направлениях: или гены расположены в направлении от 5'-конца молекулы к 3'-концу (положительное направление, или + полярность), аналогично направлению расположения генов в м-РНК в клетках, или гены вирусного генома расположены в противоположном направлении (отрицательный направление, или-полярность). Таксономия вирусов в основных чертах похожа на таксономию клеточных организмов. Таксономические категории , используемые в классификации вирусов, такие (в скобках приведены суффиксы для образования латинских названий): Ряд ( -virales ) Семья ( -viridae ) Подсемейство ( -virinae ) Род ( -virus ) Вид Но в номенклатуре вирусов есть и некоторые особенности, отличающие ее от номенклатуры клеточных организмов. Во-первых, названия не только видов и родов, но также рядов и семей пишутся курсивом, во-вторых, в отличие от классической линнеевськои номенклатуры, названия вирусов не является биноминальной (т.е. образованными из названия рода и эпитета вида - подробнее см.. в статье «Научная классификация» ). Обычно названия вирусов образуются в форме [Болезнь] -вирус. В целом в настоящее время описано около 80 семей, в которые входят примерно 4000 отдельных видов вирусов. Распределение семей на ряды начался недавно и происходит медленно; в настоящее время ( 2005 год) выделено и описано диагностические признаки только трех рядов, и большинство описанных семей является неклассифицированных. Вирусология — раздел микробиологии, изучающий вирусы (от латинского слова virus — яд). Природа вирусов Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов: Наличие только одного из двух видов нуклеиновых кислот. Отсутствие собственной белок-синтезируемых систем. Они представляют собой генетических паразитов. Вирусы не растут, а только репродуцируются (размножаются). Строение вирусов Вирусы можно рассматривать двояко: как болезнетворные агенты и как агенты наследственности. Не все вирусы являются двойственными агентами; некоторые действуют только как болезнетворные, другие – только как агенты наследственности. Какую роль играет вирус, во многих случаях зависит от клетки хозяина и условий внешней среды. Вирусы – это биологические объекты, имеющие свои особенности: 1. Содержат в своем составе только один из типов нуклеиновых кислот: РНК или ДНК. 2. Не обладают собственным обменом веществ. Для размножения используют обмен веществ клетки-хозяина, ее ферменты и энергию. 3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют (в отличие от бактерий вирус паразитирует на генетическом уровне). Вопрос о происхождении вирусов является дискуссионным. В настоящее время обсуждаются три гипотезы: 1) вирусы – примитивные доклеточные формы жизни; 2) вирусы возникли из патогенных бактерий в результате их крайней деградации (регрессивной эволюции), в связи с облигатным паразитизмом; 3) вирусы возникли из нормальных клеточных компонентов, вышедших из-под контроля клеточных регулирующих механизмов, и превратились в самостоятельные единицы. Наиболее вероятна третья гипотеза. Можно предположить, что на участке ДНК хозяина произошла серия генетических изменений, превративших его в вирусную ДНК. Фрагмент клеточной ДНК перешел к самостоятельной репликации, стал функционировать как матрица для синтеза РНК и белков. Подтверждением гипотезы является тесная связь между клетками и вирусами, а также высокая приспособленность вирусов к использованию клеточных систем. Объяснить происхождение РНК-вирусов труднее, так как в нормальной клетке не бывает саморепликации РНК. Вирусы существуют в двух основных формах: внеклеточной и внутриклеточной. Основными компонентами вирусной частицы являются нуклеиновая кислота и капсид. Некоторые вирусы имеют внешнюю оболочку, окружающую их капсиды. По структуре это типичная двухслойная биологическая мембрана. Капсид построен из капсомеров, которые, в свою очередь, состоят из одной (как у ВТМ) или нескольких белковых субъединиц. Для вирионов характерна строгая геометрическая упорядоченность строения. Вирион или его отдельные части обладают определенной симметрией – спиральной и изометрической. Спиральный тип симметрии характерен для многих вирусов растений и некоторых фагов. Спиральные вирусы подразделяют на палочковидные (ВТМ) и нитевидные (х-, у- и z-вирусы картофеля, вирус желтухи свеклы и др.). Изометрические капсиды по форме почти идентичны сфере, представляют собой правильные многогранники. Могут быть построены в виде тетраэдра, октаэдра или икосаэдра, причем последний тип является наиболее распространенным. Икосаэдр – это правильный многогранник, имеющий 20 граней, 12 вершин и 30 ребер. Капсид защищает центральную часть вириона (ядро), в которой расположена нуклеиновая кислота или нуклеиновая кислота с белком. По этому принципу построены некоторые вирусы растений (мозаики огурцов, некроза табака). К зоопатогенным вирусам с икосаэдрической структурой относятся вирусы группы герпеса, аденовирусы, возбудители полиомиелита и др. Сложные капсиды имеют большинство бактериофагов. Бактериофаги Escherichia coli Т-серии (Т-2, Т-4, Т-6) имеют головку и хорошо развитый отросток, состоящий из сократительного чехла и внутреннего полого белкового стержня. Один конец чехла закреплен на стержне, не соединяясь с головкой, а другой заканчивается базальной пластинкой с шипами и нитями. Чехол состоит из белковых субъединиц, уложенных по спирали. Сокращение чехла способствует проникновению ДНК в клетку хозяина При электронно-микроскопическом анализе строения капсидов на их поверхности удается обнаружить выступы, шипы, которые обычно расположены на каждой из 12 вершин икосаэдра. Эти шипы играют важную роль в инициации инфекции. В литературе описан "волосатый" фаг, у которого от поверхности головки вириона отходят многочисленные фибриллы. Далеко не у всех вирусов животных вирионы имеют описанные формы. Вирионы рабдовирусов по форме напоминают пулю; их оболочка образуется в результате отпочкования от плазматической мембраны клетки. Вирионы группы оспы имеют форму параллелепипеда с неравными ребрами, полностью формируются в цитоплазме клетки. Размеры вирусных частиц могут достигать нескольких сотен нанометров. Химический состав вирусов Вирусы имеют сравнительно простой химический состав. Непременным компонентом вирусной частицы является нуклеиновая кислота, белок и зольные элементы (К, Na, Ca, Mg, Mn, Fe, Cu), соединенные с отрицательно заряженными группами нуклеиновой кислоты и белка. Эти три компонента являются общими для всех без исключения вирусов (простых или минимальных). Липиды и углеводы входят в состав сложных вирусов. Различают две большие группы вирусов: ДНК-геномные и РНК- геномные. Большинство вирусов растений содержат РНК. Среди вирусов человека и животных широко представлены обе группы. Большинство бактериофагов являются ДНК-геномными вирусами. Вирусная ДНК. Молекулы вирусных ДНК могут быть двух цепочечными или одно цепочечными, линейными или кольцевыми. Для двуспиральной циклической ДНК характерна суперспирализация, при этом изменяются свойства молекулы, повышается устойчивость к экзонуклеазам. Большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу. В составе ДНК фагов обнаружены аномальные азотистые основания: вместо цитозина – 5-оксиметилцитозин или 6-метилцитозин, а вместо тимина – 5-оксиметилурацил. Глюкозилирование ДНК некоторых фагов придает ей стабильность, делает нечувствительной к действию ДНКазы. Вирусная РНК. У вирусов РНК выполняет функции вещества наследственности. Может быть двух- или одноцепочечная. Геном одного вируса может быть фрагментированным. Эти фрагменты могут входить в состав одного вириона (моновирусы) или разных вирионов (ковирусы или мультивирусы). Распределение генома одного вируса по разным вирионам позволяет увеличить объем генетической информации без увеличения массы молекулы РНК и вириона в целом. У реовирусов геном состоит из 10 фрагментов, все фрагменты обнаруживаются в составе одного вириона. У некоторых представителей РНК-вирусов одна и та же вирионная молекула РНК может выполнять функции матрицы для собственной репликации и функции мРНК, ее обозначают как (+) цепь РНК. Молекулы РНК, которые служат матрицей для собственной репликации и не могут транслироваться, обозначают как (-) цепь. Вирусные белки. Белки, входящие в состав вирионов, называют структурными. Количество структурных белков – от 1-2 до 10-30 видов. Белок всех исследованных до настоящего времени вирусов построен из L- аминокислот. У вирусов со сложной организацией вириона обнаружены основные (гистоноподобные), так называемые «внутренние» белки, которые связаны с нуклеиновой кислотой. Белки выполняют защитную функцию, придают стабильность молекулам нуклеиновой кислоты, облегчают их проникновение в клетку. Особенности белковых оболочек вирусов: 1. Устойчивость к протеолитическим ферментам. Маскировка концевых аминокислот и другие особенности третичной и четвертичной структур белков придают им высокую устойчивость к действию протеаз. 2. Устойчивость к действию ряда физических и химических факторов. Например, вирус полиомиелита выдерживает изменения рН от 1,6 до 10,0, обработку 0,5 %-м раствором фенола, 50 %-м сернокислым аммонием, а также эфиром, ацетоном, уксуснокислым свинцом. В то же время многие вирусы довольно чувствительны к изменению рН и действию ядовитых веществ. Каких-либо общих закономерностей в этом отношении не отмечено. Ферменты вирусов. Большинство вирусов на стадии вирионов лишено какой ферментативной активности. В составе вирионов миксовирусов содержится нейраминидаза – фермент, вызывающий гидролитическое отщепление нейраминовой кислоты, которая входит в состав оболочек эритроцитов. В составе некоторых вирусов обнаружены ферменты, участвующие в репликации вирусных нуклеиновых кислот: ДНК-зависимая РНК- полимераза, осуществляющая транскрипцию ранних РНК с ДНК (вирус оспоквакцины), РНК-зависимая РНК-полимераза (транскриптаза) и РНК- зависимая ДНК-полимераза (обратная транскриптаза), которые транскрибируют РНК и ДНК с матрицы РНК (онкогенные вирусы). У бактериофагов обнаружены 2 вируоспецифичных фермента: лизоцим и аденозинтрифосфатаза. Углеводы. Единственная группа вирусов, в которой наличие углеводов точно доказано, - вирусы животных. В составе вируса гриппа и классической чумы птиц находятся до 17 % углеводов, олигосахаридов, образованных галактозой, маннозой и другими моносахарами; эти углеводные компоненты находятся в связанном состоянии в составе гликолипидов и гликопротеидов. Липиды. Двойной слой липидов образует основную массу наружной оболочки у тех вирусов, у которых она имеется. Чаще всего липиды вирионов близки по составу к липидам клетки хозяина. В вирусах животных липиды могут составлять значительную часть: вирион энцефаломиелита лошадей содержит 54% липидов, вирус гриппа – 18-37%. Небольшое количество липидов обнаружено у бактериофагов и некоторых крупных вирусов растений. Полиамины. Возможно, что их единственная физиологическая функция состоит в нейтрализации отрицательного заряда нуклеиновой кислоты. 1.2 Размножение вирусов. Размножение вирусов происходит особым, ни с чем не сравнимым способом. Сначала вирионы проникают внутрь клетки, и освобождаются вирусные нуклеиновые кислоты. Затем «заготавливаются» детали будущих вирионов. Размножение заканчивается сборкой новых вирионов и выходом их окружающую среду. Рассмотрим простейший способ размножения вирусов (рис. 2). Представим себе некий обобщённый вариант вирусной частицы, состоящей из двух основных компонентов - нуклеиновой кислоты (РНК или ДНК), заключённой в белковой чехол (оболочку). Встреча вирусов с клетками начинается с его адсорбций, то есть прикрепления к клеточной стенки, плазматической мембране клетки. Причём каждый вирион способен прикрепляться лишь к определённым клеткам, имеющие специальные рецепторы. На одной клетке могут адсорбироваться десятки и даже сотни вирионов. Затем начинается внедрение или проникновение вириона в клетку, которое осуществляет она сама. Этот процесс называется виропексисом. Клетка как бы «втягивает» прикрепившихся вирионов внутрь. Более просто устроены бактерии не способны сами захватывать вирионы из окружающей среды. Этим,по-видимому, и можно объяснить наличие у поражающих их вирусов сложного и совершенного аппарата, подобно шприцу, впрыскивающего нуклеиновые кислоты. В зараженной клетке бактериальные ферменты репликации синтезируют комплементарную ей цепь, которая служит матрицей для образования фаговых ДНК. Они соединяются с фаговыми белками, также синтезированные бактериальными ферментами, и новые фаги покидают клетку-хозяина. Разнообразие видов и форм вирусов нуклеиновых кислот определяет и разнообразие способов их репликации. Бактериофаг (вирус, который поселяется в клетках бактерий) Т4 имеет одну двухцепочечную линейную молекулу, состоящую из 160 x 10^530 пар нуклеотидов. В ней закодировано более 150 различных белков, в том числе более 30 белков, участвующих в репликации фаговой ДНК. Обезьяний вирус SV40 имеет двухцепочечную кольцевую ДНК. Репликация у вирусов с двухцепочечной ДНК принципиально не отличается от репликации бактериальной и или эукариотической ДНК. Многие вирусы растений содержат одну линейную молекулу РНК, например первый из описанных вирус табачной мазаики (ВТМ). Молекула РНК ВТМ заключена в белковый капсид, состоящий из 2130 идентичных полипептидных субъединиц. Репликация РНК вируса табачной мозаики осуществляется ферментом, Называемым 1 РНК-зависимой РНК-полимеразой 0, закодированной в геноме вируса. Сначала этот фермент строит комплементарную РНК, а затем по ней, как по матрице, синтезирует множество вирусных РНК. Поразительно, как вирусы, которые в десятки и даже сотни раз меньше клеток, умело и уверенно распоряжаются клеточным хозяйством. Для построения себе подобных они используют клеточные материалы и энергию. Размножаясь, они истощают клеточные ресурсы и глубоко, часто необратимо, нарушают обмен веществ, что в конечном счёте является причиной гибели клеток. Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных. Эти же методы используют и для культивирования риккетсий и хламидий — облигатных внутриклеточных бактерий, которые не растут на искусственных питательных средах. Культуры клеток. Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые. Приготовление первичной культуры клеток складывается из нескольких последовательных этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови. Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование in vitro, и сохраняются на протяжении нескольких десятков пассажей. Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться in vitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др. К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от опухолевых. О размножении (репродукции) вирусов в культуре клеток судят по цитопатическому действию (ЦПД), которое может быть обнаружено микроскопически и характеризуется морфологическими изменениями клеток. Характер ЦПД вирусов используют как для их обнаружения (индикации), так и для ориентировочной идентификации, т. е. определения их видовой принадлежности. Один из методов индикации вирусов основан на способности поверхности клеток, в которых они репродуцируются, адсорбировать эритроциты — реакция гемадсорбции. Для ее постановки в культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На поверхности пораженных вирусами клеток остаются прилипшие эритроциты. Другой метод — реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жидкости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона. Количество вирусных частиц определяют методом титрования по ЦПД в культуре клеток. Для этого клетки культуры заражают десятикратным разведением вируса. После 6—7-дневной инкубации их просматривают на наличие ЦПД. За титр вируса принимают наибольшее разведение, которое вызывает ЦПД в 50 % зараженных культур. Титр вируса выражают количеством цитопатических доз. Более точным количественным методом учета отдельных вирусных частиц является метод бляшек. Некоторые вирусы можно обнаружить и идентифицировать по включениям, которые они образуют в ядре или цитоплазме зараженных клеток. Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток значительно реже бывают контаминированы вирусами и микоплазмами, а также обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздействиям. Для получения чистых культур риккетсий, хламидий. и ряда вирусов в диагностических целях, а также для приготовления разнообразных препаратов (вакцины, диагностикумы) используют 8—12-дневные куриные эмбрионы. О размножении упомянутых микроорганизмов судят по морфологическим изменениям, выявляемым после вскрытия эмбриона на его оболочках. О репродукции некоторых вирусов, например гриппа, оспы, можно судить по реакции гемагглютинации (РГА) с куриными или другими эритроцитами. К недостаткам данного метода относятся невозможность обнаружения исследуемого микроорганизма без предварительного вскрытия эмбриона, а также наличие в нем большого количества белков и других соединений, затрудняющих последующую очистку риккетсий или вирусов при изготовлении различных препаратов. Лабораторные животные. Видовая чувствительность животных к определенному вирусу и их возраст определяют репродуктивную способность вирусов. Во многих случаях только новорожденные животные чувствительны к тому или иному вирусу (например, мыши-сосунки — к вирусам Коксаки). Преимущество данного метода перед другими состоит в возможности выделения тех вирусов, которые плохо репродуцируются в культуре или эмбрионе. К его недостаткам относятся контаминация организма подопытных животных посторонними вирусами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данного вируса, что удлиняет сроки исследования. |