Главная страница

18620 Механика грунтов. 12. Закон Кулона для песчаных и глинистых грунтов. 10


Скачать 1.01 Mb.
Название12. Закон Кулона для песчаных и глинистых грунтов. 10
Дата25.01.2022
Размер1.01 Mb.
Формат файлаdocx
Имя файла18620 Механика грунтов.docx
ТипЗакон
#342012
страница19 из 20
1   ...   12   13   14   15   16   17   18   19   20

40.Определение нестабилизированных осадок во времени.


Другой важной предпосылкой расчетов деформаций грунтов является введение понятий о стабилизированных и нестабилизированных (развивающихся во времени) перемещениях. Во многих случаях для инженерной практики представляют интерес только наибольшие (конечные, стабилизированные) перемещения, а время, в течение которого происходит стабилизация деформаций, не имеет существенного значения. Такое ограничение в постановке задачи также приводит к значительному упрощению расчетов.

В то же время не всегда удается ограничиваться определением только конечных величин осадок. Поясним сказан­ное на примере. Пусть имеется сооружение, фундамент 1 ко­торого расположен на водонасыщенных глинис­тых, а фундамент 2 - на песчаных грунтах. Пусть также характеристики деформационных свойств и осадки st и s2 будут практически одинаковы и равны sx.

Однако, поскольку время развития осадок водонасыщенных грунтов связано со скоростью фильтрации воды в грунте, а процессы фильтрации в глинистых грунтах протекают существенно медленнее, чем в песчаных, характер кривых s = f(t) для этих фундаментов будет совершенно раз­личным. Может оказаться так, что осадка фундамента 2 стабилизируется в течение срока строительства t, а осадка фундамента 1 к этому времени достигнет лишь некоторой доли конечной величины. Тогда к моменту окончания строительства разность осадок этих фундаментов, может оказаться существенно больше, чем предельная для данного типа сооружения величина.

При этом сооружение может перестать соответствовать предъявленным к нему требованиям нормальной эксплуатации или даже претерпеть аварию, не достигнув времени стабилизации осадок обоих фундаментов.

В этом случае расчетом должен быть получен прогноз развития осадок каждого фундамента во времени и проведен анализ нерав­номерности деформаций сооружения для наиболее опасных пери­одов его строительства и эксплуатации. Такие расчеты выполняют­ся в соответствии с теорией фильтрационной консолидации грунтов.

41.Модель грунта по теории фильтрационной консолидации. Основные положения.


В наиболее простой постановке теория описывает деформирование во времени полностью водонасыщенного грунта (грунтовой массы). Принимается, что полное напряжение, возникающее в элементе грунта от приложенной нагрузки, разделяется на напряжения в скелете грунта (эффективные напряжения) и давление в поровой воде (поровое давление). В различных точках массива грунта под действием нагрузки возникают разные значения порового давления. Вследствие этого образуется разность напоров в поровой воде и происходит ее отжатие в менее нагруженные области массива. Одновременно под действием эффективных напряжений происходят перекомпоновка частиц и уплотнение грунта.

Математическое описание этого процесса базируется на основной предпосылке о неразрывности среды, сформулированной академиком Н.Н. Павловским еще в 1922 г., т.е. считается, что уменьшение пористости грунта (его уплотнение) пропорционально расходу воды (оттоку воды из пор грунта). Следствием этого является важное положение о том, что скорость деформации грунта будет находиться в прямой зависимости от скорости фильтрации в нем поровой воды. Поэтому основной характеристикой грунта, определяющей время протекания процесса фильтрационной консолидации, является коэффициентом фильтрации. В теории фильтрационной консолидации скелет грунта принимается линейно деформируемым.

Следует отметить, что в инженерной практике используются и более сложные модели теории консолидации, учитывающие трехкомпонентный состав грунта, сжимаемость поровой воды, ползучесть скелета и другие процессы, возникающие в грунте при его деформациях. Такие модели описаны в трудах Н.М. Герсеванова, В.А. Флорина, М.А. Био, Ю.К. Зарецкого, З.Г. Тер-Мартиросяна и других ученых.

42.Понятие реологических процессов в грунте. Вторичная консолидация.


Реологические процессы в грунте обусловлены вязким характером смещения твердых частиц и агрегатов грунта, разделенных пленками связной воды. Эти процессы сопровождаются нарушением цементац. (структурных) связей, появлением вязких контактов и переориентацией частиц грунта. Вязкое деформирование, к-рое рассматривается как ползучесть, бывает сдвиговым и объемным. Объемная деформация складывается из уплотнения, обусловленного фильтрац. свойствами (первичное уплотнение), и деформации ползучести скелета грунта (вторичное уплотнение).

Процесс ползучести в зависимости от величины нагрузки и вида грунта может быть затухающим или незатухающим. В первом случае скорость деформации стремится к нулю (кривая OA'Б' на рис. а), во втором — возрастает или сохраняет постоянное значение (кривая О А Г). Скорость развития деформаций, а следовательно, и величина деформаций в любой момент времени зависят от величины напряжения. Незатухающая ползучесть включает начальную условно-мгновенную деформацию (участок OA на рис. а), стадию неустановившейся ползучести с уменьшающейся скоростью (участок А Б) и стадию установившейся ползучести (пластично-вязкого течения) с почти постоянной скоростью деформирования. Эта стадия для структурированных грунтов переходит в стадию прогрессирующего течения с увеличивающейся скоростью (участок ВГ) и приводит к хрупкому или вязкому разрушению; для слабоструктурированных грунтов эта стадия может (при небольших напряжениях) продолжаться неограниченно долго. Начальная деформация является упругой или упруго-пластической. Деформация неустановившейся ползучести обычно обратима частично, причем восстановление ее происходит во времени. Эту стадию часто наз. последействием (упругим или пластическим). Деформации установившегося (пластично-вязкого) и прогрессирующего течения полностью необратимы.

При незатухающей ползучести и различных постоянных нагрузках, чем меньше нагрузка, тем больше времени необходимо на разрушение. Зависимость между величиной разрушающего напряжения и временем т(г), ио истечении к-poro произошло разрушение, отображает процесс снижения прочности по сравнению с условно-мгновенной прочностью т0 (сопротивлением грунта разрушению при быстром загружении — врем, сопротивление) и пределом длит, прочности т(1)—Тх (напряжением, по достижении к-рого деформация ползучести затухает и разрушения не происходит, а по превышению к-рого возникает незатухающая ползучесть, приводящая К разрушению).

1   ...   12   13   14   15   16   17   18   19   20


написать администратору сайта