задачи на алгоритмику. Задачи на алгоритмику. 148 На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число r следующим образом
Скачать 15.68 Kb.
|
Задачи на алгоритмику (№ 148) На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. К этой записи дописываются справа ещё два разряда по следующему правилу: а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001; б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2. Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите такое наименьшее число R, которое превышает 130 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе счисления. (№ 147) На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. К этой записи дописываются справа ещё два разряда по следующему правилу: а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001; б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы цифр на 2. Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите такое наименьшее число R, которое превышает 150 и может являться результатом работы алгоритма. В ответе это число запишите в десятичной системе счисления. (№ 144) Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам. 1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры. 2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей. Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016. Укажите наименьшее число, при обработке которого автомат выдаёт результат 621. (№ 463) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 34 и при этом траектория вычислений содержит число 12? (№ 461) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 30 и при этом траектория вычислений содержит число 20 и не содержит числа 12? |