Главная страница
Навигация по странице:

  • 20.1 Классификация источников

  • По приуроченности к определенным типам водоносных систем.

  • Подземные воды криолитозоны. Лекция 15. 19. Подземные воды криолитозоны


    Скачать 0.52 Mb.
    Название19. Подземные воды криолитозоны
    АнкорПодземные воды криолитозоны
    Дата20.12.2021
    Размер0.52 Mb.
    Формат файлаdoc
    Имя файлаЛекция 15.doc
    ТипДокументы
    #311395

    19. Подземные воды криолитозоны
    Многолетнемерзлые горные породы занимают около 25 % территории всей земной суши. Особенно они распространены в северном полушарии. Территория нашей страны примерно на 60% представлена площадью с наличием многолетнемерзлых пород. Это районы крупнейшего строительства в настоящем и, особенно в будущем, поэтому изучение многолетней мерзлоты и особенно гидрогеологических условий этих районов имеет огромное значение.

    Мерзлота, наблюдаемая на поверхности земной коры, подразделяется на три основных разновидности: кратковременная, сезонная и многолетняя (существует более 100 лет). Многолетнемерзлые породы составляют криолитозону – часть криосферы Земли (криос – холод).

    Многолетнемерзлые горные породы – это породы, содержащие в порах, трещинах, пустотах лед и имеющие отрицательную или нулевую температуру, сохраняющуюся в течение многих лет или веков. Они располагаются в определенных климатических условиях, для которых характерны: отрицательная среднегодовая температура воздуха, сухая холодная и продолжительная зима, короткое сравнительно теплое лето, малое количество осадков (150-400 мм), из которых на зимние приходится 50мм. Эти климатические особенности являются малоблагоприятными для формирования и питания подземных вод всей криолитозоны.

    Мерзлоту обычно подразделяют на сплошную, таликовую и островную.

    Реки в области многолетней мерзлоты зимой часто промерзают до дна за счет малого расхода, а в летнее время он сильно увеличивается. Неглубокие подземные воды периодически промерзают, поэтому для водоснабжения необходимо использовать подземные воды, залегающие под мерзлотой или в многолетних надмерзлотных таликах. Источники здесь своеобразны, многие из них функционируют в течение определенных сезонов, часто меняют место выхода (мигрируют), образуют бугры и наледи. Но имеются и сравнительно постоянные источники с большим дебитом и даже повышенными температурами.

    При горных работах мерзлота играет двоякую роль; с одной стороны затрудняет ведение работ, с другой облегчает, так как в некоторых случаях позволяет вести проходку горных выработок без крепления. При бурении вода в скважинах замерзает и захватывает буровую колонну, поэтому для промывки иногда используют нагретую воду или рассолы. Накапливается опыт строительства в криолитозоне, чему примером служит уникальный город Норильск, а также приполярные города Западной Сибири (Салехард, Лабытнанги, Уренгой, Надым и др.)

    На происхождение мерзлоты существуют различные взгляды:

    Одни ученые считают ее продуктом современных суровых климатических условий, другие связывают с эпохами четвертичных оледенений. И.П. Герасимов и К.Н. Марков считают, что «ледниковые покровы и мерзлота – антагонисты». Напротив, П.Ф. Швецов указывает, что в районе Верхоянска, где материкового оледенения не было, мощность мерзлоты меньше, чем в Амдерме, где было покровное оледенение. Для окончательного решения этого вопроса необходимы дальнейшие тщательные исследования.

    Мощность многолетнемерзлых пород колеблется в широких пределах (от нескольких десятков, до нескольких сотен метров) и возрастает с юга на север. По данным Г.Б. Острого, В.И. Баулина и других исследователей в Западной Сибири нижняя граница мерзлоты повторяет структурный план более глубоких горизонтов.

    В вертикальном разрезе области или района с многолетнемерзлыми породами выделяются:

    Деятельный слой – слой максимального зимнего промерзания и летнего оттаивания. Мощность деятельного слоя в зависимости от характера слагающих его пород, их влажности, гранулометрического состава, географического положения и климата района, экспозиции склонов рельефа изменяются от нескольких см до 3-5 м.

    Зона многолетнемерзлых пород часто с таликами и трещинами, с которыми бывают связаны подземные воды.

    Зона талых пород, в проницаемых разностях которых залегают и движутся подземные воды.

    Подземным водам области мерзлоты посвящены работы М.И. Сумгина, Н.И. Толстихина, А.И. Ефимова и многих других.

    Особое место занимает работа Н.И. Толстихина, в которой всесторонне рассмотрены вопросы гидрогеологии мерзлой зоны, в частности дана классификация подземных вод, согласно которой выделяются 3 класса вод: надмерзлотные, межмерзлотные, подмерзлотные, в каждом из них имеются подклассы.


    Рис. Изменение толщины слоя мерзлоты в зависимости от геоструктурных условий (на примере Западной Сибири, по Г. Б. Острому).

    19.1 Надмерзлотные воды



    воды деятельного слоя воды многолетних надмерзлотных таликов

    Надмерзлотные воды деятельного слоя.

    Распространены повсеместно. Водоупорным основанием (подошвой) является верхняя поверхность мерзлоты, неровности, которой обусловливают изменение мощности водоносного горизонта. Область питания и распространения в летний период совпадают. Основным источником питания являются атмосферные осадки, а иногда поверхностные воды и трещинно-жильные подмерзлотные (восходящие) воды. При промерзании они могут приобретать местный напор (криогенный напор), который меняется, т.е. они напорно-безнапорные, обычно маломинерализованные, повышение минерализации наблюдается в случае связи их с водами более глубоких горизонтов. Своеобразный режим этих вод не позволяет использовать их для постоянного водоснабжения населенных пунктов и других объектов.

    Воды многолетних надмерзлотных таликов.

    Обычно распространены в таликах под руслами рек и озер. Последние оказывают отепляющее действие. Под крупными реками Сибири могут быть сквозные талики, являющиеся своего рода окнами в питании и разгрузке меж - и подмерзлотных водоносных горизонтов.

    С наступление зимы эти воды могут приобретать напор, т.е. они также напорно-безнапорные воды. Источники питания разнообразны, поэтому состав их пестрый. Эти воды используются для водоснабжения населенных пунктов, железнодорожных станций и других объектов.


    Рис. Схемы надмерзлотных таликов: а) под котловиной озера;

    б) под долиной реки; в) сквозной подрусловой талик.

    19.2 Межмерзлотные воды



    воды в жидкой фазе воды в твердой фазе
    Межмерзлотные воды в жидкой фазе.

    Залегают в зоне многолетнемерзлых осадочных, магматических и метаморфических горных пород. Эти воды часто бывают связаны с надмерзлотными и подмерзлотными водами. По характеру вмещающих пород выделяют пластово-поровые, карстовые и трещинно-жильные межмерзлотные воды.

    Пластово-поровые – в аккумулятивных террасах речных долин, где они залегают в талых песках и галечниках, переслаиваются с мерзлыми глинистыми породами (глины, суглинки, супеси).

    Карстовые – в пустотах карбонатных, гипсоносных и соленосных пород.

    Трещинно-жильные – в трещинах выветривания и тектонических сбросового характера, не выходящих за пределы нижней границы зоны мерзлых пород. А если выходят, то отмечается связь этих вод с подмерзлотными водами.

    Существование в мерзлых породах многолетнемерзлых вод в жидкой фазе объясняется непрерывным их движением, сохраняющим водоносные пути от промерзания и повышенная минерализация воды, обусловливающая замерзание при отрицательной температуре, более низкой, чем окружающие мерзлые породы.

    Межмерзлотные воды могут быть и напорными и безнапорными. Химический состав их различный, определяется составом пород, условиями питания, наличием или отсутствием связи с более глубокими водами (встречаются воды от пресных до рассолов, например в Южной Якутии).

    Межмерзлотные воды являются наиболее низкотемпературными подземными водами на земле и в ряде случаев (например, при залегании и движении в соленосных мерзлых породах), они имеют отрицательную температуру. Пресные межмерзлотные воды в большинстве своем пригодны для водоснабжения.

    Межмерзлотные воды в твердой фазе.

    Это залежи подземного льда. Они широко распространены в Якутии, на Ляховских и Новосибирских островах и других приполярных и полярных районах РФ. Подземные воды в мерзлых породах залегают в виде пластов, линз, жил, клиньев мощностью до десятков метров. Пресные льды при их таянии и плавлении дают воду, пригодную для водоснабжения.
    19.3 Подмерзлотные воды
    Залегают или непосредственно под зоной мерзлых горных пород или отделены от ее нижней границы водоупором. Они встречаются только в жидкой фазе. Обладают напором.

    При изучении аллювиальных подмерзлотных вод необходимо учитывать возможность симметричного или ассиметричного залегания мерзлых пород.

    Температура аллювиальных вод близка к нулю, реже равна 1-20С и понижается по мере углубления.

    Порово-пластовые и трещинно-пластовые воды залегают в различных осадочных породах. Первые характерны для слабосцементированных, вторые – для плотных, где преобладает трещиноватость.

    Карстовые воды подобны уже рассмотренным вне криолитозоны. Они наиболее водообильны, зимой образуют большие наледи.

    Трещинные и трещинно-жильные воды приурочены к коре выветривания и зонам тектонических нарушений. Наибольшее значение имеют вторые.

    Питание подмерзлотных вод происходит за счет атмосферных осадков, надмерзлотных, межмерзлотных и поверхностных вод под крупными реками и озерами и морских вод на побережьях морей. Областями разгрузки надмерзлотных, межмерзлотных и подмерзлотных вод являются моря и озерные котловины, долины рек, овраги, тектонические трещины и разрывы, зоны контактов магматических пород с осадочными, талики под крупными реками и озерными котловинами, не промерзающими до дна.

    Глубина залегания подмерзлотных вод имеет тенденцию к погружению в северном направлении и достигает 300-600м и более.

    Режим подземных вод областей многолетней мерзлоты характеризуется специфическими чертами, которые определяются:

    1. Промерзанием и оттаиванием деятельного слоя;

    2. Деградацией или нарастанием зоны многолетнемерзлых пород во времени.

    В зависимости от этих двух факторов изменяются условия питания и дренирования подземных вод, характер их взаимосвязи между собой, смена жидкой фазы твердой и наоборот, переход вод из безнапорных в напорные (криогенные напоры).

    Вследствие взаимодействия этих факторов в криолитозоне развиваются физико-геологические явления и процессы: бугры пучения, термокарст.

    Бугры пучения образуются в результате миграции воды при промерзании пород. Это надежный поисковый критерий подземных вод.

    По Н.И. Толстихину наледи – ледяное тело, образовавшееся при замерзании речной или подземной воды, излившейся на поверхность льда, снега, земли или в пределах деятельного слоя, в результате промерзания путей движения в водоносном горизонте. Они разнообразны по происхождению, положению относительно поверхности земли, форме и размерам. Площадь их может достигать 1-2- км2, мощность- до десятков метров. Бывают и подземные наледи: однолетние и многолетние (гидролакколиты). Они могут взрываться при замерзании воды за счет увеличения объема льда и реализации криогенного напора.

    При таянии подземного льда могут образовываться провалы почвы и подстилающих ее горных пород. Это явление называется термокарст. Следствием его являются озера, воронки, блюдца, колодцы, ложбины и другие формы. Термокарст - один из признаков деградации многолетней мерзлоты. При гидрогеологических исследованиях важно установить – деградирует мерзлота(улучшаются гидрогеологические условия) или происходит ее нарастание (ухудшение гидрогеологических условий).
    20. Источники
    Источником называется естественный выход подземных вод на земную поверхность. Частичной альтернативой этого термина могут быть термины родник, который используется для характеристики выхода пресных вод, и ключ – фонтанирующий восходящий выход холодных подземных вод.

    Последний этап формирования подземных вод перед выходом их на земную поверхность зависит от особенностей водоносных систем. Источник замыкает водосборную площадь, с которой вода стекает к месту его выхода. Выработано понятие о минимальных размерах водосборной площади, необходимых для образования источника. Чем больше эта площадь, тем более стабильны показатели, характеризующие этот источник. Иными словами, площадь водосбора источника регулирует возможность существования временно действующего или постоянно функционирующего источника. Весьма важное значение для образования источника имеет степень расчлененности рельефа или глубина вреза эрозионной сети. В связи с этим часто используется понятие базиса дренирования водоносных систем, которое соответствует положению ложа реки, озера, водохранилища, моря. Если водоносные системы находятся выше вреза реки, уровня озера, водохранилища, моря, происходит свободная разгрузка подземных вод, их вытекание на поверхность в виде источников; если разгрузка происходит ниже вреза поверхностных вод, следует говорить о скрытом, или субаквальном, дренировании водоносных систем.

    Показателем степени дренированности территории является плотность гидрографической сети, заболоченность и озерность территории. Из сказанного следует, что образование источников есть результат сочетания аридности – гумидности климата и степени расчлененности рельефа. Меньше всего глубина вреза эрозионной сети в Западной Сибири (30-40 м). На Восточно-Европейской равнине она увеличивается до 100-150 м, а в Восточной Сибири даже до 200 м и более. Поскольку глубина вреза речной сети является продуктом неотектонических движений, можно говорить о связи степени дренированности водоносных горизонтов не только с климатическими, но и неотектоническими процессами. Минимальная площадь, необходимая для образования источника, является вторичной по отношению к первым двум факторам (климату и расчлененности рельефа). Так, для образования постоянно действующего источника в условиях гумидного климата минимальная водосборная площадь должна быть не менее 0,5-3 км2 для среднегорных районов, 3-5 км2 для низкогорных районов и 5-10 км2 для равнинных районов. В аридных областях водосборная площадь источников значительно выше. Например, один постоянно действующий источник в условиях Центрального Казахстана приходится на 200-300 км2.

    Структурно-гидрогеологическая обстановка играет важную роль в формировании источников. Она определяет особенности строения разреза и закономерности распределения движения подземных вод в зоне аэрации и верхних водоносных горизонтах. Переслаивание водоносных и водоупорных пород, их вещественный состав и фильтрационные свойства, наличие тектонических нарушений, барражей и «гидрогеологических окон» обусловливают характер водоносности и тип источника.

    Для каждой водоносной системы, которая замыкается источником, можно выделить область питания, область движения, область, зону или очаг разгрузки. Для грунтовых вод и верховодки области питания и движения обычно совпадают. При параллельноструйном, а тем более веерообразным (растекающемся в разные стороны) движении вод возникает пластовая или рассеянная их разгрузка. В том случае, если линии тока сходятся в одну точку по ходу движения подземного потока, возрастает его расход и в очаге разгрузки образуется сосредоточенный источник. Этому может способствовать наличие тектонического нарушения, карстового канала или зоны повышенной проводимости. Специфические гидродинамические условия возникают на участках разгрузки напорных водоносных систем, где имеются своеобразные «гидрогеологические окна», благоприятствующие образованию восходящих и даже фонтанирующих источников.

    Химический состав вод источников из скважин, пробуренных на тот же водоносный горизонт, несколько различается. В источник сливаются воды верхней, наиболее промытой части водоносного горизонта. При откачках из скважин в депрессионную воронку попадают воды и из более глубоких частей водоносного горизонта. Поэтому воды источников менее минерализованы, чем воды скважин. Обратим внимание еще на одно обстоятельство. В очагах разгрузки подземных вод резкая смена гидродинамической и гидрохимической обстановок приводит к появлению гидрохимических барьеров (окислительному, сорбционному, температурному, газовому и др.). Эти процессы способствуют осаждению из воды тонких взвесей и растворенных минеральных веществ. По этой причине на участках разгрузки подземных вод нередко наблюдаются различные минеральные образования: гейзериты, травертины, туфы, натеки и другие отложения.
    20.1 Классификация источников
    В справочной литературе приводится много вариантов классификаций источников по различным признакам (В.М. Максимов, Д.И. Пересунько, М.Е. Альтовский). Рассмотрим некоторые из них.

    По времени действия. Источники подразделяются на постоянные и временно существующие. Постоянно действующие источники функционируют в течение многих лет и на одном месте. Их режим может испытывать сезонные колебания, но значительные размеры области питания позволяют им сохраняться длительное время. Поэтому дебиты постоянно действующих источников значительно выше, чем временно существующих. Последние обычно возникают в периоды инфильтрационного питания, затем их возможности постепенно иссякаю, и через какой-то период (1-3 месяца) они пересыхают.

    По приуроченности к определенным типам водоносных систем. Источники могут быть образованы верховодкой, грунтовыми водами, трещинно-грунтовыми водами, карстовыми водами, артезианскими водами, водами многолетней мерзлоты, трещинно-жильными водами и водами зон тектонических нарушений, а также водами современных вулканогенов.

    1. Верховодка. Источники, питающиеся верховодкой, характеризуются резкими колебаниями дебита, температуры, химического состава. Время их существования после прекращения атмосферного питания невелико (до нескольких десятков дней). Чаще всего источники этого типа наблюдаются в горных районах, где их питают приповерхностные воды, называемые горной верховодкой.

    2. Грунтовые воды. С ними связано образование нисходящих источников, изменение их основных параметров подвержено сезонным колебаниям. В рассматриваемой группе источников различают эрозионные, контактовые, выклинивания и переливающиеся, или экранированные. Эрозионные источники образуются в результате вскрытия водоносного горизонта эрозионно-абразионными процессами. Контактовые источники выходят по контакту водоносных и водоупорных пород на склонах и уступах рельефа. Источники выклинивания образуются на участках фациального замещения водоносных пород водоупорными в местах выклинивания водоносных горизонтов. Переливающиеся источники имеют восходящее движение на участках выхода водоносного горизонта на поверхность. Роль водоупорной покрышки, обусловливающей восходящий характер вод источника, выполняют аллювиально-делювиальные отложения, тектонические сбросы или фациальные замещения пород.



    Рис. Эрозионный источник

    1. водоносные известняки;

    2. водоупорные соли





    Рис. Переливающиеся родники (по М.Е. Альтовскому)


    1. Трещинно-грунтовые воды. Источники, приуроченные к зоне выветривания магматических и метаморфических пород, могут иметь как нисходящий, так и восходящий характер. Дебиты источников заметно растут на участках, где трещиноватость выветривания усиливается трещиноватостью тектонических разломов.




    1. Карстовые воды. Источники этой группы могут быть также нисходящими и восходящими. Условия образования этих источников весьма разнообразны, так как они связаны с породами, имеющими хорошо разветвленную сеть каналов, пустот и трещин (карбонатные, гипсоносные и соленосные породы). Среди карстовых источников различают перемежающиеся, постоянные и субмаринные, или эжекторные. Перемежающиеся источники отличаются резким непостоянством дебита. Они действуют по принципу сифона, и их производительность колеблется от очень значительной до весьма малой. Постоянные источники связаны с наиболее обводненной зоной карста, где распространены каналы, пещеры, подземные реки и озера. В этой зоне формируются самые крупные источники мира с дебитом до 10-20 м3/с. Производительность потоков карстовых вод подвержена значительным сезонным колебаниям. Субмаринные источники приурочены к подземным карстовым каналам, залегающим ниже уровня моря. Режим их действия зависит от соотношения давления, которое создается в канале и в головках источника. Если давление воды в канале превышает давление над головками источника, создается эжекторный эффект, и воды разгружаются в море. При обратном соотношении напоров происходит засасывание морских вод в канал. Этот эффект называется «морской мельницей». В этом случае соленые морские воды могут образовывать источники выше уровня моря.



    Рис. Перемежающийся родник


    1. Артезианские воды. Источники этой группы являются обычно восходящими. Они выходят в понижениях рельефа: долинах рек, котловинах озер, на дне оврагов и балок, на морских побережьях. Особенно велик перепад гидростатических давлений в пластах создается на участках предгорий, где область питания приподнята на многие сотни метров выше области разгрузки. Поэтому в предгорьях образуются наиболее мощные и фонтанирующие источники с дебитами десятки и сотни литров в секунду.




    Рис. Источники артезианских вод

    1 – водоносные известняки;

    2 – водоупорные слои


    1. Подземные воды мерзлой зоны литосферы. Источники мерзлой зоны могут быть образованы тремя типами вод: надмерзлотными, межмерзлотными и подмерзлотными. Надмерзлотные источники связаны с деятельным слоем и таликами (подрусловыми и подозерными). Существование жидких вод в деятельном слое ограничено коротким теплым сезоном. В холодный период года Надмерзлотные источники исчезают, так как воды деятельного слоя промерзают, образуя бугры пучения и малые наледи. Наибольшее протаивание подрусловых и подозерных таликов происходит в сентябре. Это время наибольшей активности надмерзлотных источников. В холодный период года эти талики, как правило, промерзают, и деятельность источников прекращается.

    Межмерзлотные воды встречаются в разрезе, сложенном так называемой слоистой мерзлотой. Межмерзлотные воды относятся к напорным, а источники, образующиеся при их разгрузке, - к восходящим и постоянно действующим. В зимний период на месте их выхода возникают наледи. Также восходящими и постоянно действующими являются источники, питаемые подмерзлотными водами. Эти источники способствуют появлению крупных наледей. Подмерзлотные источники установлены в долинах крупных рек (Нижняя и Подкаменная Тунгуска), их воды имеют высокую минерализацию и нередко отрицательную температуру.


    1. Трещинно-жильные воды. В глубоких тектонических зонах возможно развитие циркуляционных систем, в которых одни трещины выполняют роль поглощающих, а другие – выводящих.


    Рис.. Восходящий родник тектонических зон

    1. - восходящий источник; 2 – направление движения вод;

    3 – зона трещиноватости; 4 – тепловой поток

    При проникновении инфильтрационных вод на глубину нескольких километров растет температура их минерализации, они обогащаются минеральными слоями, газами и микрокомпонентами.

    В молодых и омоложенных складчатых областях формируются минеральные воды различного типа (азотные термы, углекислые воды и др.). С тектоническими зонами связаны многочисленные выходы пресных вод, источники которых могут быть нисходящими и восходящими.

    1. Минеральные термальные воды современных вулканогенов. В районах современной вулканической деятельности выявлено большое количество источников минеральных и термальных вод. Чаще всего встречаются восходящие источники, но нередко и нисходящие. Особый интерес среди источников районов современного вулканизма представляют гейзеры. Впервые они были обнаружены в Исландии. В нашей стране они встречены на Камчатке. Фонтанирование гейзера происходит с определенной периодичностью (несколько часов, суток). Механизм действия гейзера следующий. В канале гейзера инфильтрационная вода образует столб, который давит на воду, скопившуюся ранее и имеющую температуру около 100 0С. Какое-то время эта вода не вскипает, потому что ей нужно набрать еще некоторое количество тепла. Наконец, перегретая вода бурно вскипает и фонтаном выбрасывается на поверхность. Продолжительность извержения горячей воды, как и подготовки к фонтанированию, у каждого гейзера разная.

    По генезису. По происхождению источники разделяют на естественные и искусственные. Наиболее широко распространены естественные выходы подземных вод на земную поверхность. Искусственные выходы образуются в результате инженерно-хозяйственной деятельности человека. Примерами таких водопроявлений могут быть источники, образовавшиеся в нижней части бьефа плотин, возникшие на полях орошения, участках сброса дренажных вод, прорыва водопроводной сети, в местах устройства баражных сооружений и т.д.

    По величине дебита. Диапазон колебаний дебита источников, известный в мировой практике, огромен: от долей кубических сантиметров до десятков кубических метров в секунду, т.е. максимальный дебит, по крайней мере, в 10 млрд раз больше минимального. Гигантские выходы подземных вод на земную поверхность (более 1 м3/с) наблюдаются в закарстованных массивах и молодых вулканогенах. Крупные источники с дебитом 10-100 л/с характерны для горных областей. Этому способствует сильно расчлененный рельеф, особенно глубокие эрозионные врезы и уступы. Нередко источники с такой производительностью встречаются и в равнинных областях, у подножья речных и морских террас.

    В практике гидрогеологических обследований расход естественных водопроявлений, как правило, изменяется в диапазоне 0,1-2,3 л/с. Статически это примерно 70-80% от числа наблюдаемых родников; они обычно являются репрезентативными, т.е. характеризуют определенную гидрогеологическую обстановку, легко опробуются, а результаты их опробования хорошо интерпретируются. Слабые проявления подземных вод на земной поверхности, т.е. рассеянные выходы, мочажины, заболачивания, переувлажнения почв, фиксируются как места разгрузки подземных вод и практического значения не имеют.
    20.2 Режим источников
    Под режимом источника понимается изменение его параметров во времени. Дебит, температура, химический состав, минерализация, газонасыщенность – эти данные позволяют оценивать баланс и ресурсы подземных вод, условия питания и разгрузки водоносного горизонта, устанавливать роль различных режимообразующих факторов. По отношению минимального дебита к максимальному (Qmin/Qmax) М.Е. Альтовский выделяет пять групп источников:


    Qmin/Qmax

    1:1

    1:1-1:2

    1:2-1:10

    1:10-1:30

    1:30-1:100

    Источники

    Весьма

    постоянные

    Постоянные

    Переменные

    Весьма

    переменные

    Исключительно переменные


    Наблюдения за дебитом источников дополняют результатами исследований химического и газового состава вод, минерализации и температуры, которые позволяют установить зависимость этих показателей вод от воздействия атмосферных факторов (осадков, температуры и др.). На основании такого комплексного обследования источники делят на категории постоянно действующих, сезонно зависящих и ритмически функционирующих.

    В головке источника часто наблюдаются его отложения, представляющие собой охры, натеки, налеты, туфы, соли, грязи. Их изучение дает представление о химическом и температурном режиме вод источника. В неострых случаях с их помощью можно определять генезис источников, а иногда устанавливать практическую ценность его отложений.


    написать администратору сайта