Практическое №2. 2. 8 Время работы изделия подчинено нормальному закону с параметрами m
Скачать 13.28 Kb.
|
2.6 Вероятность безотказной работы автоматической линии изготовления цилиндров автомобильного двигателя в течении 120 час равна 0.9. Предполагается, что справедлив экспоненциальный закон надежности. Требуется рассчитать интенсивность отказов и частоту отказов линии для момента времени t =120 час., а также среднее время безотказной работы. 2.7 Среднее время безотказной работы автоматической системы управления равно 640 час. Предполагается, что справедлив экспоненциальный закон надежности. Необходимо определить вероятность безотказной работы в течение 120 час., частоту отказов для момента времени t=120 час и интенсивность отказов. 2.8 Время работы изделия подчинено нормальному закону с параметрами mt = 8000 час., σt =1000 час. Требуется вычислить количественные характеристики надежности p(t) , f(t) , λ(t) для t=8000 час. 2.9 2.10 Время исправной работы скоростных шарикоподшипников подчинено закону Вейбулла с параметрами α=2,6 ; λ= 1,65*10-7 1/час. Требуется вычислить количественные характеристики надежности Р(t), f(t), λ(t) для t=150 час. и среднее время безотказной работы шарикоподшипников. 2.11 Вероятность безотказной работы изделия в течение t=1000 час. Р(1000)=0,95. Время исправной работы подчинено экспоненциальному закону. Требуется определить количественные характеристики надежности f(t), λ (t), mt. 2.12. Среднее время исправной работы изделия равно 1260 час. Время исправной работы подчинено экспоненциальному закону. Необходимо найти его количественные характеристики надежности P(t), f(t), λ (t) для t=1000 час. 2.13 В результате анализа данных об отказах изделия установлено, что частота отказов имеет вид f(t)=2e-t (1-e-t) . Необходимо найти количественные характеристики надежности P(t), λ (t), mt. 2.14. В результате анализа данных об отказах изделий установлено, что вероятность безотказной работы выражается формулой P(t)=3e-t-3e-2t+e-3t. Требуется найти количественные характеристики надежности P(t), λ (t), mt. 2.15. Определить вероятность безотказной работы и интенсивность отказов прибора при t = 1300 часов работы, если при испытаниях получено значение среднего времени безотказной работы mt=1500 час. и среднее квадратическое отклонение σt = 100 час. |