8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах
Скачать 4.43 Mb.
|
11.3.Растворимость примесей в водном теплоносителеПримеси, поступающие в водный теплоноситель, можно разделить на две группы: естественные примеси и продукты коррозии. Естественные примеси поступают в водяной тракт за счет присосов воды в конденсаторе и сетевых подогревателях, с добавочной водой; остаточная концентрация катионов Na, К, Са, Mg не изменяется после БОУ (после конденсатора, если нет БОУ). Продукты коррозии (катионы Fe, Cu, Al и др.) образуются в самом водяном тракте, их количество увеличивается по мере прохождения среды по тракту. Естественные примеси делятся на две группы: трудно (мало) растворимые и легко (хорошо)растворимые. К труднорастворимым соединениям относятся соединения Са и Mg: сульфат CaSO4, карбонаты СаСО3, MgCO3, силикаты СаSiO3, MgSiO3, гидроксиды Са(ОН)3, Mg(OH)2. К легкорастворимым соединениям Са и Mg относятся: сульфат MgSO4, хлориды CaCI2, MgCL2, бикарбонаты Са(НСО3)2, Mg(HCO3)2. Все натриевые соединения обладают высокой растворимостью в воде. Поступление в паровой котел труднорастворимых соединений кальция и магния с питательной водой лимитируется на достаточно низком уровне. При нарушениях в работе конденсатоочистки, увеличении присосов воды в конденсаторе количество поступающих соединений Са и Mg значительно возрастает. Такие соединения, как CaSO4, CaCO3, Mg(OH)2, имеют отрицательный температурный коэффициент растворимости, т.е. с ростом температуры растворимость падает (рис. 11.5). В природных водах содержание Са существенно выше, чем Mg, поэтому при анализе поведения труднорастворимых соединений обычно рассматривают только соединения Са. Труднорастворимые соединения в воде частично диссоциируют на ионы (катионы Mem+ и анионы Ann-). Например:
Степень диссоциации К равна (вместо активностей рассматриваем концентрации ионов, что для разбавленных растворов допустимо)
Произведение концентрации (активностей) ионов труднорастворимой соли в насыщенном растворе, называемое произведением растворимости ПР, постоянно при данной температуре и зависит от температуры системы. При упаривании воды в испарительных поверхностях нагрева концентрация всех ионов повышается и может достигнуть насыщения. В первую очередь кристаллизоваться из водного раствора будут те соединения, произведение растворимости которых минимально. Соединения с отрицательным коэффициентом растворимости кристаллизуются в основном на поверхности нагрева, образуя накипь. Такие вещества называют накипеобразователями. Другие вещества, с положительным коэффициентом растворимости, кристаллизуются в объеме раствора на грубодисперсных и коллоидных частицах, образуя шлам, т.е. мелкие взвешенные в воде частички (вещества - шламообразователи). На (рис. 11.6) приведены значения растворимости для некоторых легкорастворимых соединений. Видно, что некоторые из них (NaOH) имеют положительный коэффициент растворимости во всем приведенном диапазоне температур, другие (Na3PO4, Na2SO4) - только до 100…150°С, а при температуре свыше 200°С имеют отрицательный коэффициент растворимости. При нормальной работе барабанных котлов концентрация этих примесей обычно значительно меньше их растворимости, и кристаллизоваться на стенках трубы или в объеме среды они не будут. Только в местах упаривания воды (в отложениях на стенке, в прикипевшем к стенке шламе) и в зоне кризиса теплообмена возможно достижение насыщения и выпадение легкорастворимых соединений. Растворимость веществ в воде и паре определяется физико-химическими свойствами вещества и водного теплоносителя, которые, в свою очередь, зависят от температуры и давления. В области, примыкающей к температуре кипения при ДКД и в зоне большой теплоемкости при СКД, плотность водного теплоносителя резко падает до относительно низких значений в паровой фазе. Соответственно растворяющая способность теплоносителя снижается. В питательной воде содержится заметное количество различных продуктов коррозии конструкционных материалов. Наиболее важную роль в образовании внутритрубных отложений, в интенсивности коррозии играет магнетит Fe3O4. Растворимость магнетита в воде представлена на (рис. 11.7). Видно, что максимум растворимости магнетита приходится на температуру порядка 150°С, а затем растворимость уменьшается до температуры 300…350°С. С увеличением концентрации аммиака (при этом рН растет с 8,75 до 9,7) растворимость магнетита падает. В действительности концентрация магнетита в питательной воде может быть в несколько раз выше растворимости. Это означает, что в воде магнетит находится не только в растворенной форме, но и имеются коллоидные и грубодисперсные частицы. Растворимость других оксидов металлов в воде имеет такой же порядок, что и растворимость магнетита (рис. 11.8). Растворимость веществ в перегретом паре описывается формулой
где К - постоянная для данного вещества величина;m - координационное число, показывающее среднестатистическое количество молекул воды, скоординированных около одной частицы растворяющегося вещества; ∆Н - тепловой эффект реакции растворения. Так как плотность пара ρ с ростом температуры уменьшается, а экспонента увеличивается, то можно ожидать, что растворимость веществ в паре будет иметь минимум при какой-то температуре. На (рис. 11.9) для примера показана растворимость NaCI в перегретом паре для нескольких значений давления. Видно, что при р = 14 МПа и 18 МПа, имеются минимумы растворимости при температуре 470…500°С. С увеличением давления плотность пара и растворимость веществ растет. При сверхкритическом давлении плотность среды плавно изменяется от плотности воды до плотности пара, наиболее интенсивное (по температуре) изменение плотности происходит в ЗБТ. Поэтому растворимость веществ в жидкой фазе (до ЗБТ) при СКД аналогично растворимости в воде при ДКД, т.е. может иметь положительный или отрицательный температурный коэффициент растворимости. В зоне большой теплоемкости растворимость веществ из-за резкого уменьшения плотности среды снижается, а затем, при переходе в область перегретого пара, может дальше снижаться или, после прохождения минимума, расти (рис. 11.10). |