Лекция 9. 8. Магнитные свойства химических элементов, минералов и горных пород
Скачать 124.5 Kb.
|
8. Магнитные свойства химических элементов, минералов и горных пород. Большинство химических элементов являются диа- и парамагнитными. Характерно четко выраженная периодичность смены диамагнетизма на парамагнетизм элементов. Элементам первой половины периодов свойственен парамагнетизм в связи с незаполненностью электронами внешней орбиты, элементы второй половины – диамагнетизм, определяющийся полностью заполненными орбитами. Диамагнитная восприимчивость большинства элементов составляет (-10÷0)*10-5СИ. Диамагнетиками являются инертные газы, ряд металлов (медь, серебро, золото, цинк, висмут) и неметаллов (кремний, кварц, алмаз, графит, сера, фосфор), органические соединения. Восприимчивость парамагнитных веществ положительна, и магнитные моменты усиливают внешнее поле. При намагничивании атомные моменты выстраиваются по направлению поля. Абсолютные значения æ меняются в диапазоне 10-2 ÷10-5 ед. СИ. К парамагнетикам относятся щелочные и щелочноземельные металлы, некоторые переходные металлы; ряд солей железа, кобальта, никеля и редкоземельных элементов, из газов кислород. Среди парамагнитных веществ выделяется особая группа веществ, называемая ферромагнитными. К ферромагнетикам относится железо, кобальт, никель, и некоторые виды лантаноидов: гадолиний (64 Gd), тербий (65Tb), диспрозий (66Dy), гольмий (67 Ho), эрбий (68Er). А также ряд соединений хрома, марганца и урана с неферромагнитными элементами. По величине æ все минералы делятся на три группы: диамагнетики, парамагнетики и ферромагнетики. Диамагнитные минералы (висмут, медь, золото, серебро, алмазы, свинец, кварц, гипс, и другие) обладают самой малой восприимчивостью æ обычно порядка (1-2) ·10-5 ед. СИ. Такие минералы не могут создавать магнитных аномалий. Парамагнетизмом обладают соли редкоземельных элементов, щелочные металлы ряд широко распространенных породообразующих минералов умеренно кислого и основного состава: оливина, пироксенов, амфиболов, гранатов, железосодержащих слюд, а также доломит, магнезит, каолинит. Парамагнитные минералы (платина, гранат, турмалин, мусковит, биотит) имеют магнитную восприимчивости æ порядка (20-90) ·10-5 ед. СИ. Их крупные скопления вызывают аномалии в несколько нанотесл. Магнитная восприимчивость чисто парамагнитных минералов, как правило, не превышает значений (25-35)·10-5ед.СИ. Наличие микровключений ферромагнитных элементов, связанных с ранней стадией кристаллизации магматических пород или с высокотемпературными метасоматическими процессами, повышает значение æ. Двух- и трехвалентное железо, входя в состав слюд, оливинов, пироксенов, гранатов, создает повышенную парамагнитную восприимчивость. Для большинства известных минералов характерная смешанная параферромагнитная природа магнетизма. Примеры магнитной восприимчивости (*10-5 ед. СИ) некоторых минералов (Н.Б.Дортман, 1984г.):
Интенсивность намагничивания у диамагнитных минералов и парамагнитных минералов прямолинейно растет в увеличением магнитного поля. Ферромагнетики характеризуются значениями æ>> 0, μ>>1, а также намагниченностью, являющейся нелинейной и неоднозначной функцией внешнего магнитного поля. Ферромагнитные минералы (от лат. слова ferrum –железо) обладают самыми высокими значениями магнитной восприимчивости æ. Никель и кобальт естественных ферромагнитных минералов не образуют. Наиболее постоянными параметрами для чистых ферромагнитных минералов является намагниченность насыщения Js и температура Кюри. Наиболее распространенными ферромагнитными минералами являются окисные соединения железа – магнетит 8,8-25 ед. СИ, титаномагнетит 1,3-10-4 ед. СИ, маггемит 3,8-25 ед. СИ; сидерит 2,5-7,5 10-3 ед. СИ; из сульфидных минералов – пирротин 0,13-1,3 ед. СИ. Большой магнитной восприимчивостью обладает минерал якобсит MnFe2O4 – 250 ед. СИ. Выделяют четыре группы минералов:
Магнитные свойства горной породы зависят от ее химико-минералогического состава, структуры, соотношения в породах диа-, пара-, и ферромагнитных минералов и их количества. Магнитные совйства пород характеризуются широким диапазоном значений до десятков тысяч 10-5СИ. В зависимости от магнитных свойств на практике используют классификацию горных пород, предложенную Д.Л.Берсудским. Он разделил все породы по величине æ на пять групп:
Для определения магнитных свойств пород отбирают образцы из обнажений и измеряют в лабораторных условиях. Для измерения остаточной намагниченности отбирают ориентированные образцы по специальной методике. Магнитные характеристики горных пород определяются следующими факторами:
Магматические породы характеризуются очень широким диапазоном значений магнитной восприимчивости – от единиц до десятков тысяч 10-5 ед. СИ. Широкий диапазон измерения значений æ определяется составом первоначальных расплавов, термобарическими и окислительно-восстановительными условиями образования и последующих изменений пород. В магматических породах ферромагнитные минералы присутствуют в виде зерен первично-магматических минералов – магнетита, титаномагнетита, ильменита, гемольменита и других веществ низко- и высокотемпературного окисления при кристаллизации магмы – гематита, маггемита. Таким образом, эти минералы появляются как одновременно с образованием породы, так и в процессе ее жизни. Средние значения магнитной восприимчивости возрастают от кислых к основным и ультраосновным группам пород. Кроме того, основные и средние породы ранних фаз внедрения расплавов отличаются во всех интрузивных комплексах различных формаций более высокими значениями æ, чем у последующих фаз. Это связано с ростом кислотности пород от начальных фаз и соответственно уменьшением содержания ферримагнетиков. Для метаморфических пород характерен наиболее широкий диапазон изменения значений магнитной восприимчивости и естественной намагниченности. Мрамор, кристаллические известняки характеризуются отрицательной магнитной восприимчивостью. Железистые кварциты, серпентиниты, скарны по значениям магнитной восприимчивости, остаточной и естественной намагниченности приближаются к магнетитовым рудам. При этом эти метаморфические породы встречаются редко и образуют самостоятельный класс диамагнитных пород. Наиболее широко распространенные породы – микрокристаллические сланцы, гнейсы, амфиболиты имеют и малый диапазон изменений магнитных свойств и обладают более низкими максимальными значениями, чем магнитные образования. Метаморфические породы имеют либо очень слабую магнитную восприимчивость, зависящую от состава породообразующих минералов, либо различное значение магнитной восприимчивости от 100 *10-5 до 10000*10-5 ед. СИ, пропорционально содержанию ферромагнитной фракции. Все магнитные параметры метаморфических пород зависят от первоначального субстрата и от различий процессов его преобразования. В регионально-метаморфизованных породах ферромагнетики представлены магнетитом, в породах, подвергшихся гидротемально – метасоматическим процессам, - магнетитом, гематитом, маггемитом в тесной ассоциации с породообразующими железосодержащими минералами – оливином, амфиболом, пироксеном. Низкие значения магнитной восприимчивости характерны для метаморфических пород, происходящих из практически немагнитных осадочных (глинистые сланцы, филлиты, кварциты, мрамор и др.). Магнитные характеристики осадочных пород обусловлены главным образом акцессорными минералами, обладающими выраженными ферромагнитными свойствами – магнетитом и его разновидностями, маггемитом, гематитом и гидроокислами железа. Значения магнитной восприимчивости осадочных пород существенно меньше значений æ магматических пород, поскольку содержание в них ферромагнитных минералов ниже. Наиболее распространенные породообразующие минералы осадочных пород (кварц, кальцит, полевые шпаты, гипс, ангидрит, галит) являются диамагнетиками или слабыми парамагнетиками и естественно не вносят заметного вклада в магнитную восприимчивость пород. Среди сильных парамагнетных минералов наибольшую роль играют сидерит, хлорит, пирит, ильменит, биотит, иногда глинистые минералы. Однако в значительной мере эта роль обусловлена примесями, реликтами и новообразованиями железоокисных минералов с ферромагнитными свойствами. С этими включениями и примесями связаны повышенные значения магнитной восприимчивости. Магнитные минералы присутствуют в виде зерен магнетита, мартита и гематита с эффективным диаметром от 0,01 до 2 мм. По размерам эти зерна принадлежат к песчано-алевритовой фракции. В глинистых породах они встречаются в виде тонкорассеянного гематита, маггемита осадочно-диагенетического происхождения. Диаметры зерен в этом случае изменяются от долей микрометра до нескольких десятков микрометров. Все эти частицы попадают в глинистые фракции. Нефть является диамагнетиком. Ее магнитная восприимчивость примерно равна (-1)*10-5 ед. СИ. В зависимости от плотности и состава магнитная восприимчивость нефти может несколько изменяться. В пластовых условиях нефть может характеризоваться даже слабыми парамагнитными свойствами, что обусловлено молекулярными свойствами органических компонент с железом и его окислами и повышенной концентрацией этих соединений. Магнитные свойства газа неизвестны. По аналогии с другими газами можно предполагать, что значения магнитной восприимчивости имеет порядок 1*10-5 ед. СИ. Магнитные аномалии от залежей связываются с различием магнитной восприимчивости углеводородов и законтурных вод, а также пород коллектора. Магниторазведочная аппаратура Измерения магнитного поля Земли и его вариаций проводят как на стационарных пунктах - магнитных oбсерваториях, которых насчитывается на Земле около 150, так и при магниторазведочных работах. Абсолютные определения полного вектора напряженности геомагнитного поля сводятся к измерению, как правило, трех его элементов (например Z, D, H). Для этого применяют сложные трехкомпонентные магнитные приборы, которые называются магнитными теодолитами и вариационными станциями. При геологической разведке измеряют абсолютные Z,Tи относительные (по отношению к какой-нибудь исходной (опорной) точке ∆Z,∆T) элементы. Для полевых магниторазведочных пород чаще всего применяют современные цифровые магнитометры, позволяющих исследовать распределение на земной поверхности абсолютных величин модуля магнитной индукции. Квантовый магнитометр (магнитометр с оптической накачкой) - прибор для измерения напряжённости магнитных полей, основанный на квантовых явлениях. Квантовые магнитометры применяются главным образом для измерения напряжённости слабых магнитных полей и, в частности, магнитного поля Земли. Схема оптического квантового магнитометра: Л – источник света; СФ –светофильтр; П1 – поляроид; П2 - пластинка (λ/4), создающая разность фаз 90° для получения циркулярно поляризованного света; К – колба, наполненная парами щелочного металла: Ф – фотоприёмник; Н - измеряемое поле. Датчиком прибора является стеклянная колба, наполненная парами щелочного металла (например, Rb), атомы которого парамагнитны, т.к. содержат один неспаренный электрон. При пропускании через колбу, помещенную в измеряемое поле Н, циркулярно поляризованного света, частота которого равна частоте оптического квантового перехода между основным состоянием атома и одним из его возбуждённых состояний, происходит резонансное рассеяние света. При этом момент количества движения квантов рассеиваемого света передаётся атомам, которые таким образом «оптически ориентируются», скапливаясь на одном из магнитных подуровней основного состояния. Если в объёме колбы датчика создать переменное магнитное поле, частота которого равна частоте квантового перехода между магнитными подуровнями основного состояния, то населённость атомов на магнитных подуровнях выравнивается, атомы теряют приобретённую преимущественную ориентацию магнитных моментов и приходят в исходное состояние. При этом пары металла, наполняющие колбу, вновь начинают сильно поглощать и рассеивать свет. Измеряя частоту переменного поля со, можно определить напряжённость магнитного поля Н, в котором находится колба датчика. Оптические магнитометры особенно удобны для измерения слабых полей. Чувствительность, которая может быть достигнута при помощи таких приборов, 10–2—10–3 нТл,что позволяет измерять очень слабые поля, в частности в космическом пространстве. Протонный магнитометр. Датчиком магнитометра является ампула с диамагнитной жидкостью, молекулы которой содержат атомы водорода (например, воду или бензол). Магнитные моменты молекул обусловлены только магнитными моментами ядер атомов водорода — протонами. Ампулу помещают в катушку L, через которую пропускают в течение нескольких секунд ток, создавая в ней вспомогательное магнитное поле H0 напряжённостью в несколько сот эрстед. Под действием поля H0 магнитные моменты протонов ориентируются и жидкость приобретает суммарный магнитный момент М. Рис. 7. Схема протонного магнитометра: L — катушка, создающая вспомогательное намагничивающее поле H0; П — катушка, в которой возникает эдс, обусловленная прецессией ядерных моментов вокруг измеряемого магнитного поля Н; У — усилитель сигнала; Ч — частотомер. После выключения тока магнитные моменты протонов начинают прецессировать вокруг направления измеряемого магнитного поля Н с частотой ω = γ pH, где γ р = (2,67513 ± 0,00002) 104 гс–1сек–1— магнитомеханическое отношение для протонов. Прецессия суммарного магнитного момента М приводит к появлению в катушке П переменной эдс с частотой, равной частоте прецессии ω. Прецессия постепенно затухает благодаря процессу релаксации, обусловленному слабым взаимодействием между протонами и атомами парамагнитных примесей, растворимых в рабочей жидкости. Для чистой воды время релаксации Квантовый магнитометр3 сек. Для повторного измерения поля цикл повторяют. Цикличность работы датчика устраняют, например, с помощью системы из 2 датчиков, работающих поочерёдно. Электронный квантовый магнитометр аналогичен протонному. В нём используется прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов, частота которой в несколько сот раз больше частоты прецессии протонов. Частота прецессии для электронов в поле Н =1 э равна 2,8 Мгц. Изменение поля на 1 гамму приводит к изменению частоты прецессии на 28 гц, что в 660 раз больше, чем для протонных магнитометров. Для получения достаточно больших эдс применяют методы динамической поляризации ядер. При этом ориентация магнитных моментов протонов осуществляется благодаря их взаимодействию с электронными моментами парамагнитных ионов (в воде растворяют парамагнитную соль). Таким способом ядерную намагниченность удастся увеличить в несколько сот раз. Применение вещества, содержащего радикалы нитрозодисульфоната калия, позволяет увеличить намагниченность ещё примерно в 40 раз. Методики полевой магнитной съемки.Наземная полевая магнитная съемка проводится с помощью пешеходных магнитометров. На каждой точке измеряются или абсолютные значения полного вектора геомагнитного поля (T), точнее магнитной индукции (B=μ0T), или относительные значения ∆T(∆Z). Под относительными понимаются приращения той или иной составляющей поля в любой точке наблюдения по отношению одного исходного пункта. При снятии отсчетов записывается время (t). Полевая съемка отличается высокой производительностью: отряд из двух человек отрабатывает от нескольких десятков до двухсот точек в день. Методика, т.е. способ проведения магниторазведочных работ, сводится к выбору вида съемок, их масштаба, направления профилей, густоты точек наблюдения, точности измерений и способа изображения результатов. Различают три вида наземных магнитных съемок: 1) картировочно-поисковые, 2) поисково-разведочные, 3) разведочные (или детальные). Остановимся на краткой характеристике этих видов съемок. Целью картировочно-поисковых магнитных съемок является решение задач крупномасштабного геологического картирования (масштабы 1 : 50 000, 1 : 25 000, 1 : 10 000), а также непосредственные поиски железосодержащих руд. Съемка ведется по системам профилей, маршрутов, расстояния между которыми меняются от 200 до 500 м. Расстояния между точками не менее 50м. Целью поисково-разведочных магнитных съемок является детализация аномалий картировочно-поисковых съемок: выявление тектонических нарушений, оценка размеров, формы и положения рудных тел. Поисково-разведочные съемки выполняются в масштабах 1 : 10 000, 1 : 5 000, 1 : 2 000, 1 : 1 000. Съемка осуществляется по системам профилей, удаленных на расстояния 50 - 200 м, с шагом наблюдений от 10 до 50 м. Целью детальных разведочных магнитных съемок является выяснение размеров, формы и положения включений пород с различными магнитными свойствами, разведка рудных месторождений, детальное геологическое картирование. Масштабы съемок от 1 : 2 000 и крупнее, а расстояния между профилями могут изменяться от 10 до 100 м. Расстояния между точками наблюдений меняются от 5 до 20 м в зависимости от размеров рудных тел, их глубины и интенсивности намагничения. Полевые магнитные съемки бывают профильными и площадными. Съемки по отдельным профилям используются при рекогносцировочных исследованиях для выявления общих закономерностей аномальных полей. Однако иногда интерпретационные профили задаются вкрест выявленных площадной съемкой аномалий. Основным же видом съемок являются площадные, выполненные по системам параллельных профилей. Подходы к выбору сети наблюдений такие же, как и в гравиразведке. Однако при магнитной съемке менее жесткие требования к топопривязке, отсутствует опорная сеть, а густота рядовых пунктов наблюдения несколько больше. Сеть наблюдений разбивается как инструментально, так и визуально с измерением шагами расстояний между пунктами и инструментальной привязкой начала и конца профилей, а также исходной точки. Последняя выбирается на базе экспедиции. Здесь же желательно установить один магнитометр для снятия напряженности геомагнитного поля через 30 - 60 минут или магнитовариационную станцию для ее непрерывной записи. Эти приборы служат для расчета вариаций Tвар, Zвар геомагнитного поля в любое время t. Вариации можно получить и из ближайших обсерваторий, удаленных от десятков до первых сот километров по мере уменьшения требований к точности съемки. Расстояния между профилями берут в 3 - 5 раз меньше длины, а между точками съемки (шаг наблюдений) - в 3 - 5 раз меньше ширины предполагаемых аномалосоздающих объектов. Для стандартизации методики рекомендуют шаг съемки делать равным 1, 5, 20, 25, 50 или 100 м. Расстояния между профилями, направленными всегда вкрест предполагаемого простирания разведываемых структур или рудных тел, могут быть равны шагу или в 2 - 3 раза превышать его. Разновидностью наземной магнитной съемки является микромагнитная. Это высокоточная съемка с точностью измерения T, ∆T, ∆Z до 1 нТл и шагом квадратной сети 1 - 5 м. Для исключений вариаций через несколько замеров на рядовых точках берется отсчет на опорном пункте. Качество выдаваемых геомагнитных карт (кондиционность) определяется прежде всего густотой сети (расстояние между профилями должно составлять примерно 1 см в масштабе карты) и точностью съемки. Для оценки точности съемки на ряде точек (5 - 10% от общего количества) ведутся повторные наблюдения и рассчитывается средняя квадратическая погрешность измерений где δi - разность отсчетов на i-той точке при основном и повторном замерах, а - число повторных точек. Требования к точности наблюдений при наземной съемке устанавливаются в зависимости от масштаба съемок и напряженности магнитного поля. В слабых полях точность наблюдений должна быть высокой: среднеквадратическая погрешность съемки не больше 5 нТл при мелкомасштабных съемках и не больше 2 нТл при крупномасштабных. При наличии интенсивных магнитных аномалий (сотни и тысячи гамм) среднеквадратическая погрешность не должна превышать (20 - 30) нТл. В результате полевой съемки по наблюденным составляющим (T, ∆T,∆Z) рассчитываются аномальные магнитные поля: Ta = T – Тн – Твар = ΔТ - Твар где Тн - нормальное поле, Tвар- вариации поля на время t замера T или ∆T. В выражениях для относительных параметров ∆Tа часто принимается, что T0 на опорном пункте равны нулю. Это допустимо, если изучаемая площадь не превышает нескольких десятков квадратных километров. Для съемок больших территорий необходимо знать T0, т.е. "привязать" опорные пункты к системам сети нормального магнитного поля Земли. Результаты магнитной съемки изображаются в виде графиков Ta, (их называют иногда профилями), карт профилей и карт. Аэромагнитная съемка проводится по системе профилей при непрерывной записи T или ∆T на каждом профиле (маршруте). Направления профилей выбираются вкрест предполагаемого простирания структур или тектонических нарушений. Расстояние между профилями зависит от масштаба съемки: при миллионном масштабе расстояния между маршрутами устанавливаются 10 км, при масштабе 1 : 500 000 - 5 км, при масштабе 1 : 100 000 - 1 км, при масштабе 1 : 50 000 - 500 м. Чем крупнее масштаб, тем меньшей должна быть высота полета аэромагнитной станции. Обычно она меняется от 50 до 500 м. Скорость полета 100 - 200 км. Привязка профилей при аэромагнитной съемке осуществляется разными способами: по аэрофотоснимкам, радиогеодезическая и др. и должна быть тем точнее, чем крупнее масштаб съемки. Для учета вариаций и сползания нуль-пункта прибора перед началом рабочего дня и после его окончания делается специальный залет на опорный (контрольный) маршрут длиной до 10 км. Все рабочие маршруты "привязываются" к контрольным маршрутам. Для оценки погрешности измерений и увязки между собой маршрутов выбирается несколько профилей, перпендикулярных рабочим маршрутам. На этих профилях проводятся повторные залеты. По результатам повторных измерений вычисляется среднеквадратическая погрешность измерений. Точность съемки считается хорошей, если погрешность не превышает 10 нТл или 20% от амплитуд выявленных аномалий. При обработке магнитограмм аномальные значения рассчитываются путем вычитания из наблюденного значения Tн поля Ta. Последнее определяется по картам нормального магнитного поля или с помощью расчета так называемого нормального градиента по данным аэромагнитной съемки. В результате аэромагнитной съемки строятся карты, графики, а также карты графиков Ta. Гидромагнитная съемка в океанах, морях и на озерах ведется как на специальных судах, так и попутно на кораблях любого назначения. Для исключения влияния металлического корпуса судна применяются специальные приемы, а датчик поля буксируется за ним на кабеле длиной свыше 100 м в специальной немагнитной гондоле либо вблизи дна, либо на некоторой глубине. Профили (галсы) привязываются по штурманским картам. Съемки бывают профильными, реже площадными. В результате строятся графики, карты графиков и карты Ta. Интерпретация магниторазведочных данных При интерпретации результатов магниторазведки очень важно установить геологическую природу отдельных аномалий или аномальных зон и попытаться выяснить, какие геологические процессы привели к образованию объектов, обладающих аномальной намагниченностью по отношению к вмещающим породам. Поэтому, приступая к интерпретации, необходимо, чтобы был собран весь возможный материал о геологическом строении участка, магнитных и плотностных свойствах различных пород, участвующих в его строении. Вначале выполняют качественную интерпретацию: дают описание структуры поля, выделяют отдельные области с однотипным полем, например, нормальным, спокойным, повышенным или пониженным или резко возмущенным и т.п. Характеризуют отдельные аномалии – указывают их интенсивность форму, размеры, простирание и на базе опыта проведения работ в подобных районах делают предположительное заключение о природе аномалий, т.е. о происхождении и составе пород, слагающих возмущающие объекты. Однозначное решение указанной задачи не всегда возможно. Поэтому желательно найти не один, а несколько возможных вариантов решения и попытаться выделить наиболее вероятностные из них. Такое выделение во многих случаях оказывается возможным, так как разные по природе источники аномалии могут различаться глубиной залегания, формой и размерами тел, намагниченностью, плотностью, а также другими физическими свойствами. В связи с этим необходимо выполнять количественную интерпретацию с целью определения перечисленных выше параметров. Региональными называются аномалии, проявляющиеся на больших площадях (в десятки и сотни тысяч кв.км) и обусловленные крупными образованиями в земной коре и верхней мантии. Присутствие региональных аномалий обычно проявляется в тенденции изолиний поля к ориентировке (вытягиванию) в определенном направлении и в систематическом изменении величин, характеризующих поля в этом направлении. Перпендикулярно к этому направлению поля обычно плавно изменяются. Локальные аномалии проявляются на картах в трех формах: 1) наличием систем замкнутых изолиний с одним или несколькими относительными максимумами или минимумами; 2) наличием локальных вариаций (изгибов) в ходе изолиний; 3) наличием сгущений изолиний (зон резко повышенного градиента поля). По своей морфологии локальные аномалии обычно подразделяются на изометричные и линейные. Изометричные аномалии характеризуются концентрическим характером изолиний, линейные – параллельным расположением с резким изменением формы в области замыкания. Заключения об источниках аномалий основываются на следующих принципах: 1. Наличие аномалий с относительным максимумом свидетельствует о присутствии возмущающего тела с положительной интенсивностью намагничения и, наоборот, наличие аномалий с относительным минимумом свидетельствует о наличии дефекта намагниченности. 2. Наибольшие по абсолютной величине значения аномалий наблюдаются, как правило, вблизи проекций центров тел на дневную поверхность. Исключением в некоторых случаях являются магнитные аномалии, обусловленные объектами с наклонным намагничением и вертикально намагниченными горизонтальными пластами малой вертикальной мощности. 3. Линии наиболее быстрого изменения поля (наибольших по абсолютной величине градиентов поля) приближенно соответствуют боковым границам возмущающих тел. 4. Простирание аномалий соответствует простиранию возмущающих тел; изометричные аномалии соответствуют телам с изометричной проекцией на дневную поверхность. 5. Наличие симметрии на графиках поля вдоль направлений перпендикулярных простираниям изолиний свидетельствует о симметричном расположении плотностных и магнитных (при вертикальном намагничении) масс относительно вертикальной плоскости, проходящей через точку максимума (или минимума) графика. Асимметрия графиков свидетельствует об асимметрии в распределении магнитных масс. 6. Сложная конфигурация изолиний в плане, особенно наличие нескольких экстремумов, свидетельствует о присутствии нескольких, достаточно близко расположенных возмущающих тел. Под количественной интерпретацией понимается нахождение по наблюденному аномальному полю параметров распределения масс (элементов залегания возмущающих тел) на основе аналитических или графических соотношений. Количественная интерпретация может включать в себя определение всех или только некоторых параметров возмущающих тел. Методы количественной интерпретации аномалий опираются на теорию решения прямой и обратной задач гравитационно-магнитного потенциала. Прямой задачей называются методы вычисления и нахождения картины структуры поля (нахождение значений потенциала или его производных) в любых точках пространства, внешнего к образующим поля массам, по заданному распределению этих масс (плотности или интенсивности намагничения масс и их координат). Обратной задачей предусматривается нахождение распределения параметров масс, создающих на блюдаемое поле по его значениям. Для расчетов и интерпретации аномалий геопотенциальных полей могут применяться следующие методы: 1. Расчеты и интерпретация аномалий по аналитическим формулам. 2. Расчеты и интерпретация различными палетками. 3. Интерпретация по атласам и по палеткам теоретических кривых. 4. Интерпретация интегральными методами. 5. Интерпретация аномалий на основе изучения вероятностно – статистических закономерностей полей. При геологической интерпретации аномалий иногда удобнее использовать не сами наблюденные значения поля, а их некоторые преобразования(трансформированные) аналоги. Наблюдаемые геопотенциальные поля являются результатом суммированного влияния аномалеобразующих масс различной природы, которые следует трансформировать или разделить на некоторые составляющие. Под трансформацией здесь понимается некоторое преобразование исходного наблюдаемого поля с целью выделения одних его особенностей и подавления других, менее существенных. К наиболее важным трансформациям можно отнести следующие преобразования и пересчеты: 1. Осреднение наблюдаемого поля осуществляется чаще всего с целью выделения региональной составляющей наблюдаемого поля. Могут применяться различные приемы осреднения: графические, палеточные, интегральные, аналитические. 2. Преобразования, связанные с получением новых составляющих напряженности поля или их градиентов, осуществляются с применением аналитических и палеточных методов. 3. Аналитические продолжения предусматривают нахождение значений какой-либо составляющей в некоторой совокупности других точек, т.е. пересчет поля в верхнюю или в нижнюю полуплоскости (полупространство), продолжение поля в боковую область. Аналитическое продолжение поля может быть осуществлено с применением палеточных и аналитических методов, на основе решений интегрального уравнения Пуассона и дифференциального уравнения Лапласа. Измеряемое поле отражает влияние различных источников, расположенных в земной коре. Одним из важнейших этапов интерпретации аномалий является задача разделения влияния различных объектов. Для этого наблюденное поле с помощью различных графических приемов или вычислительных операций преобразовывают таким образом, чтобы усилить одни и резко ослабить другие компоненты поля. Такие преобразования называют трансформациями, а их результаты – трансформантами. Следует иметь в виду, что никакая трансформация не может дать принципиально новых данных, поскольку любая трансформация в лучшем случае не ухудшает исходных данных. Большинство методов трансформации основано на следующем соответствии порядка геологического объекта и отвечающей ему аномалии: чем крупнее объект и чем глубже он залегает, тем более обширные по площади и малые по градиенту аномалии он создает и наоборот. Первые аномалии называют региональными, а вторые – локальными. Понятие региональных и локальных аномалий является относительным и определяется масштабами съемки. Для выделения региональной составляющей поля применяются методы осреднения и пересчета в верхнее полупространство. Простое среднеарифметическое осреднение выполняется с использованием радиально-кольцевой или квадратной палетки (площадной вариант), либо в пределах некоторого интервала (профильный вариант. При подобном осреднении подавляются мелкие аномалии и усиливается региональная составляющая поля, слабо зависящая от осреднения. Поэтому среднее значение поля рассматривается как региональный фон в центре палетки. Разница между наблюденным значением поля в центре палетки и региональным фоном называется остаточной или локальной аномалией. В общем случае размер палетки или интервала должен быть таким, чтобы он значительно превосходил размеры локальных аномалий, от которых нужно избавиться, и был много меньше размеров региональных аномалий. Одним из наиболее эффективных методов разделения сложного поля является аналитическое продолжение в верхнее полупространство – пересчет на некоторую высоту h. При таком пересчете соответственно возрастают глубины залегания источников, а амплитуды аномалий уменьшаются. Затухание амплитуд аномалий с высотой существенно определяется параметрами возмущающих тел: чем больше глубина залегания верхней кромки или центра тела и горизонтальные размеры тела, тем медленнее убывают аномалии с высотой. Поэтому в поле, пересчитанном в верхнее полупространство, преимущественно сохраняются аномалии, обусловленные телами, залегающими на больших глубинах, имеющими большие размеры по горизонтали и значительную протяженность на глубину. Эффект же неглубоко залегающих и небольших по размерам тел оказывается в значительной мере подавленным. Исходя из приведенных соображений, с учетом геологической задачи, размеров и глубины залегания изучаемых структур выбирается необходимая высота пересчета. Ясно, что в реальных условиях, когда поле создается совокупностью структур разного порядка, однозначно подобрать высоту пересчета так, чтобы эффект от одних структур был полностью подавлен, а от других практически не искажен, невозможно. Удается только подобрать некоторый интервал оптимальных высот пересчета. Поэтому обычно пересчет производится на несколько высот. Полученный материал дает также возможность представить пространственное распределение поля, которое может с успехом использоваться при количественных расчетах. |