Главная страница
Навигация по странице:

  • Ионизирующим

  • Теоретические основы метода

  • Основная задача радиационного контроля (РК) – зарегистрировать данное изменение интенсивности при помощи детекторов ионизирующего излучения

  • Радиографическая чувствительность

  • Разрешающая способность

  • Чувствительность радиографического контроля

  • Порядок проведения радиографического контроля

  • Средства контроля

  • Плюсы

  • Вопрос 9. Радиографический контроль. 9. Радиографический контроль. Теоретические основы метода. Средства контроля


    Скачать 25.67 Kb.
    Название9. Радиографический контроль. Теоретические основы метода. Средства контроля
    Дата03.04.2023
    Размер25.67 Kb.
    Формат файлаdocx
    Имя файлаВопрос 9. Радиографический контроль.docx
    ТипДокументы
    #1034986

    9. Радиографический контроль. Теоретические основы метода. Средства контроля.


    Радиационный неразрушающий контроль - вид неразрушающего контроля, основанный на регистрации и анализе проникающего ионизирующего излучения после взаимодействия с контролируемым объектом.

    Ионизирующим называют излучение, взаимодействие которого с веществом приводит к образованию в этом веществе зарядов различного знака. Длина волны электромагнитного ионизирующего излучения составляет 6∙10-9…10-16 м.

    При радиационном контроле ионизирующее излучение от источника проходя через объект контроля регистрируется специальным устройством – детектором.

    При прохождении излучения через объект контроля происходит уменьшение интенсивности излучения, которое зависит от размеров объекта контроля, плотности его материала и энергии источника излучения.

    Наличие в объекте контроля дефектов, плотность материала в которых отличается от основного материала, приводит к изменению интенсивности пучка излучения, прошедшего объект контроля в зоне этого дефекта.

    Источником ионизирующего излучения при радиационном контроле выступают, как правило, рентгеновские аппараты, либо источники на базе радионуклидов.

    [ИЗ ЛЕКЦИИ]
    Теоретические основы метода

    Радиографический контроль является одним из наиболее информативных методов дефектоскопии и широко применяется для контроля опасных производственных объектов. Наибольшее распространение получил радиографический метод контроля качества сварных соединений при изготовлении, монтаже, эксплуатации и ремонте в атомной промышленности, нефтяной и газовой отраслях, машиностроении, на взрывопожароопасных и химически опасных производствах.

    Рентгеновское излучение – электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением (от 0,001 до 50 нанометров). Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое: , где , – интенсивность излучения на поверхности объекта контроля и при выходе из него соответственно, Вт/м2; – толщина объекта контроля; – коэффициент ослабления ионизирующего излучения в объекте контроля, 1/м.

    Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния.

    Вследствие данных эффектов взаимодействия излучения с веществом интенсивность первичного излучения по мере прохождения его через вещество уменьшается.

    Наличие в материале внутренних несплошностей размером , отличающихся по плотности от основного материала, приводит к изменению значения интенсивности пучка излучения в зоне несплошности по сравнению с бездефектной зоной. Основная задача радиационного контроля (РК) – зарегистрировать данное изменение интенсивности при помощи детекторов ионизирующего излучения.

    Основными источниками рентгеновского излучения являются рентгеновские трубки, которые представляют собой двухэлектродный вакуумный прибор. В стеклянном или керамическом баллоне расположены катод и анод. При протекании по вольфрамовой нити накала катода электрического тока происходит его нагрев до температуры 2200 – 2500°С и за счет явления термоэлектронной эмиссии в междуэлектродном пространстве появляются свободные электроны, которые фокусируются специальным устройством и при этом образуют вокруг катода электронное облачко.

    При приложении между электродами трубки (катодом и анодом) разности потенциалов (напряжения) отрицательно заряженные электроны начинают ускоренно двигаться к положительно заряженному аноду. Возникновение рентгеновского излучения происходит при торможении ускоренных электронов мишенью анода. В качестве материала мишени используются тугоплавкие металлы, например, вольфрам или молибден.

    Радиографическая чувствительность характеризуется минимальным дефектом, выявляемым радиографическим методом и определяется радиографической контрастностью объекта контроля, разрешающей способностью и контрастной чувствительностью детектора излучения, а также геометрией просвечивания.

    Разрешающая способность характеризуется минимальным размером выявленного дефекта в плоскости, перпендикулярной направлению просвечивания и определяется минимальным расстоянием между двумя элементами изображения, которые на радиограмме переданы раздельно. Разрешающая способность детектора излучения, например, рентгеновской пленки, зависит от энергии излучения, толщины фоточувствительного слоя, метода фотообработки и размера зерен галоидного серебра.

    Минимальный размер дефекта, который может быть обнаружен радиографическим методом, зависит от его формы и местонахождения. Лучше всего выявляются дефекты с плоскими гранями, ориентированные вдоль направления просвечивания, вследствие большего градиента интенсивности излучения на границах по сравнению с дефектами, например, шаровой или цилиндрической формы. Дефекты в виде плотного слипания металла (расслоения), расположенные перпендикулярно направлению просвечивания, радиографическим методом не выявляются.

    Чувствительность радиографического контроля характеризуется минимальным лучевым (в направлении просвечивания) размером выявленного эталонного дефекта (проволочки, канавки, отверстия) и выражается в абсолютных или относительных единицах. Она зависит от радиографической контрастности контролируемого объекта и от коэффициента контрастности детектора излучения.

    Порядок проведения радиографического контроля сварных соединений регламентирован ГОСТ 7512-82 и ВСН 2-146-82 «Инструкция по радиографическому контролю сварных соединений трубопроводов различного диаметра».

    Перед проведением радиографического контроля необходимо провести подготовку к контролю.

    Радиографический контроль следует проводить после устранения обнаруженных при внешнем осмотре сварного соединения наружных дефектов и зачистки его от неровностей, шлака, брызг металла, окалины и других загрязнений, изображения которых на снимке могут помешать расшифровке снимка.

    После зачистки сварного соединения и устранения наружных дефектов должна быть произведена разметка сварного соединения на участки и маркировка (нумерация) участков, установка эталонов и маркировочных знаков.

    Одним из главных нормативных документов, регламентирующих работу с использованием источников ионизирующего излучения является «Нормы радиационной безопасности НРБ-99». Он устанавливает основные дозовые пределы: Эффективная доза 20 мЗв за год при продолжительности работы 2000 /год соответствует мощности эффективной дозы рентгеновского (гамма) излучения на рабочем месте 10 мкЗв/ч.

    За период трудовой деятельности (50лет) эффективная доза (поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, с учетом их радиочувствительности) для персонала на должна превышать 1000 мЗв, а для населения за период жизни (70 лет) – 70 мЗв.

    Средства контроля

    В качестве источников ионизирующего излучения используют радионуклиды, в результате распада которых получается линейчатый спектр излучения, рентгеновские трубки и ускорители, дающие непрерывный спектр тормозного излучения.

    Примеры источников ионизирующего излучения: гамма-дефектоскоп на основе радионуклида Se-75 РИД-Se4P; рентгеновский аппарат импульсного действия Арина-3; рентгеновский аппарат непрерывного излучения ICM SITE-X C2004; рентгеновский аппарат непрерывного излучения РПД-200; бетатрон.

    Радиографическая пленка состоит из следующих слоев: подложка – основание пленки, представляющее собой тонкую, прозрачную и гибкую пластмассу; подслой – тонкий слой специального клея, нанесенный с обеих сторон подложки и улучшающий соединение эмульсионных слоев с подложкой; светочувствительные эмульсионные слои – слои, состоящие из равномерно распределенных кристаллов AgBr и частично AgJ, нанесенный с двух сторон на подслой защитный слой – тонкий слой на основе желатина, предохраняющий эмульсионные слои от механических повреждений

    Промышленные генераторы бывают импульсного или постоянного потенциала. «Импульсники» рассчитаны на просвечивание малых толщин. С импульсными генераторами можно делать как направленные, так и панорамные экспозиции. Тем не менее, импульсные переносные рентгеновские аппараты очень мало весят (в пределах 10 кг) и стоят недорого. Но «живут», как правило, не очень долго.

    Генераторы постоянного потенциала долговечнее «импульсников», лучше подходят для рентгенографии больших толщин и диаметров. Вес таких ИИИ может составлять 20–40 кг, а иногда и больше.


    Плюсы:

    Минусы:

    Рентгеновские снимки, сделанные при радиографической дефектоскопии, могут хранится длительное время для последующего выявления причин аварий

    Качество снимка и последующего его анализа, зависит от того, как мастер настроит контролирующий аппарат

    Анализ качественных характеристик шва рентгеном точный и редко пропускает недочёты мимо себя (как видимые, так и невидимые)

    Дороговизна малогабаритных аппаратов

    Метод помогает быстро найти дефекты даже на самом глубоком уровне соединения

    Дороговизна светочувствительных пленок и других расходников

    Рентгеновский снимок показывает место, в котором есть дефект, и его приблизительный размер

    Контроль качества с применением радиографического излучения опасен для здоровья (что влечет за собой неизбежную остановку работ при просвечивании, а также обеспечение всех условий охраны труда согласно нормативной документации)

    На радиографический анализ уходит немного времени, а из средств нужен только рентген-аппарат (и пленки к нему в случае с аналоговым рентгеновским аппаратом)

    Нечувствительность к некоторым видам дефектов;

    Контролировать качество можно у сложных конструкций с труднодоступными местами (например, трубопроводных систем)

    Высокие требования к квалификации персонала, занятого в осуществлении рентгеновского контроля.

    Можно применять для широкого списка материалов





    написать администратору сайта