Главная страница

Аэродинамика самолета. Аэродинамика самолета фигуры простого пилотажа криволинейное движение


Скачать 437.28 Kb.
НазваниеАэродинамика самолета фигуры простого пилотажа криволинейное движение
АнкорАэродинамика самолета
Дата14.12.2021
Размер437.28 Kb.
Формат файлаpdf
Имя файлаaerodynamics11.pdf
ТипДокументы
#302545
страница1 из 4
  1   2   3   4

АЭРОДИНАМИКА САМОЛЕТА
ФИГУРЫ ПРОСТОГО ПИЛОТАЖА
КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ
Овладение фигурами простого, сложного и высшего пилотажа (прямого и обратного) для летчика имеет большое значение, так как пилотаж вырабатывает у него способность быстро и правильно определять положение самолета в пространстве, воспитывает смелость, уверенность в своих действиях.
Пилотажем называется маневрирование самолета с целью выполнения определенных фигур в воздушном пространстве.
Пилотажные свойства самолета оцениваются способностью его в кратчайшее время изменить положение в пространстве, величину и направление скорости полета. Изменение величины и направления скорости полета достигается увеличением или уменьшением тяги двигателя, силы лобового сопротивления самолета, а также изменением угла атаки.
При выполнении пилотажа происходит искривление траектории полета в горизонтальной и вертикальной плоскостях.
По степени сложности пилотаж подразделяется на простой, сложный и высший (прямой и обратный).
К фигурам простого пилотажа относятся: вираж, горизонтальная восьмерка, спираль, пикирование, горка с углами до 45°, боевой разворот.
К фигурам сложного пилотажа относятся: переворот, петля, полупетля, пикирование и горка с углами до 60°, горизонтальная управляемая и штопорная бочка, переворот на горке, управляемые и штопорные вращения на углах до 60° вверх и вниз.
К фигурам высшего прямого и обратного пилотажа относятся все остальные фигуры пли их комбинации, включенные в каталог фигур. В каталог фигур включено около 15 тысяч фигур и их комбинаций. Из этих фигур составляются обязательная, произвольная и темная программы соревнований всех рангов по высшему пилотажу на поршневых самолетах.
На самолете Як-52 согласно КУЛП-САО-С-86 предусмотрено выполнение на малых и средних высотах простого, сложного и частично высшего пилотажа, а также элементов обратного пилотажа.
На самолете Як-55 согласно КУЛП-САО-С-86 предусмотрено выполнение на малых и средних высотах простого, сложного и высшего (прямого и обратного) пилотажа.
Вертикальные маневры на самолетах Як-52 и Як-55 выполняются в основном за счет запаса скорости, а также и за счет силовой установки.
При выполнении пилотажа следует помнить, что каждой скорости полета соответствует определенная нагрузка, при которой происходит сваливание (срыв) самолета.
При перетягивании ручки управления срыв происходит без предупредительной тряски с энергичным накренением и опусканием капота самолета.
В процессе пилотажа необходимо выдерживать рекомендуемые скорости. Это особенно важно при выполнении учебных полетов курсантами и спортсменами первого и второго годов обучения, у которых опыт выполнения пилотажа еще мал.
Для самолета Як-52 установлена минимальная скорость выполнения пилотажа, которая равна 140 км/ч.
Для ускорения ввода в фигуры пилотажа разгон самолета следует производить не в режиме горизонтального полета, а на снижении, чтобы быстрее набрать скорость для выполнения очередной восходящей фигуры пилотажа и на нисходящей части предыдущей фигуры не допускать снижения оборотов двигателя менее 82%. Увеличение оборотов на пикировании (снижении) необходимо начинать при угле
35...45° с таким расчетом, чтобы ввод в очередную фигуру начинался с горизонтального полета по достижении заданной скорости и при максимальных оборотах двигателя.
При выполнении фигур пилотажа особо важное значение имеет осмотрительность, обеспечивающая высокое качество выполнения фигур, а также безопасность полетов.
Маневренные качества самолетов определяются величиной силы тяги двигателя, аэродинамическим качеством, эффективностью рулей и величиной допустимых перегрузок, которые вместе взятые зависят от скорости и высоты полета. Следовательно, маневренные качества самолета изменяются при изменении высоты и скорости полета.
ОБЩЕЕ ПОНЯТИЕ О КРИВОЛИНЕЙНОМ ПОЛЕТЕ
Рассмотренные ранее горизонтальный полет, подъем и снижение относятся к установившимся прямолинейным видам полета, так как действующие аэродинамические силы находятся в равновесии. Эти

АЭРОДИНАМИКА САМОЛЕТА
виды движения являются частными случаями, так как в реальных условиях самолет меняет направление как в горизонтальной, так и в вертикальной плоскостях.
Для выполнения криволинейного движения необходима центростремительная сила F
цс
, которая является нормальной составляющей к траектории движения и направленной к центру кривизны. От величины этой силы зависит кривизна траектории полета (Рис. 1). Центростремительная сила F
ц.с
вызывает нормальное ускорение JH, определяемое по формуле:
r
V
jH
2
=
(11.1) где V - скорость полета по траектории; r - радиус кривизны.
Рис. 1 Искривление траектории центростремительной силой Fц с
В динамике полета самолета для расчета траектории движения используют траекторную систему координат, в которой начало координат находится в центре тяжести самолета, ось Х направлена по вектору скорости, ось Y перпендикулярна к оси Х и находится в вертикальной плоскости, проведенной через вектор скорости, ось Z перпендикулярна вертикальной плоскости и всегда занимает горизонтальное положение и образует с осями Х и Y прямоугольную систему координат.
Следовательно, для определения основных параметров траектории криволинейного движения самолета в траекторией прямоугольной системе координат необходимо знать значения ускорений jx, jy, jz, где jx - ускорение, направленное по касательной к траектории движения и называемое продольным ускорением. Оно характеризует изменение скорости (разгон, торможение); jy-нормальное ускорение, характеризующее изменение траектории полета в горизонтальной плоскости; jz- боковое ускорение, характеризующее изменение траектории в вертикальной плоскости.
Так, например, в установившемся горизонтальном полете, подъеме и снижении ускорения равны нулю (jx=0, jy=0, jz=0).
ДЕЙСТВИЕ РУЛЕЙ УПРАВЛЕНИЯ В КРИВОЛИНЕЙНОМ ПОЛЕТЕ
Оно в основном не меняется, но управление самолетом имеет некоторые особенности.
Руль высоты в криволинейном полете служит для изменения угла атаки и тем самым - для создания кривизны траектории в плоскости симметрии самолета (Рис. 2). При работе рулем высоты в криволинейном полете (так как самолет, двигаясь по кривой, одновременно поворачивается вокруг поперечной оси, а это приводит к увеличению угла атаки горизонтального оперения) возникает противодействующий момент горизонтального оперения криволинейному полету (демпфирующий момент), вследствие чего для увеличения угла атаки самолета необходимо отклонить руль управления на большую величину.
Рис. 2 Противодействие
горизонтального оперения криволинейному
полету в плоскости симметрии самолета
Рис. 3 Противодействие вертикального
оперения криволинейному полету в
горизонтальной плоскости

АЭРОДИНАМИКА САМОЛЕТА
Руль направления в криволинейном полете, как и в прямолинейном, управляет скольжением самолета. Руль направления так же, как и руль высоты, при выполнении криволинейного полета создает демпфирующий момент (Рис. 3), что, в свою очередь, требует большего его отклонения во внутреннюю сторону криволинейного движения.
ВЛИЯНИЕ ГИРОСКОПИЧЕСКОГО МОМЕНТА ВОЗДУШНОГО ВИНТА
Допустим, что масса воздушного винта левого вращения самолетов Як-52 и Як-55 сосредоточена в двух грузах 1 и 2 (Рис. 4). В момент, когда воздушный винт находился в вертикальном положении, летчик отклонил ручку управления на себя, что привело к поднятию относительно горизонта капота самолета.
Поднятие капота самолета приведет к возникновению скорости грузов и относительно поперечной оси Z, дополнительно к имеющейся уже окружной скорости относительно продольной оси X. Когда грузы займут горизонтальное положение, то по инерции они будут стремиться сохранить приобретенную скорость и при поднятии капота относительно горизонта. В результате действия этих скоростей грузов (направленных в противоположные стороны-груза 1' назад, груза 2' вперед) возникает момент, называемый гироскопическим
моментом воздушного винта М
у.гир
, под действием его самолет начинает разворачиваться влево (при воздушном винте левого вращения).
Рис. 4 К объяснению гироскопического действия воздушного винта левого вращения на
самолетах Як-52 и Як-55
Рис. 5 Гироскопическое действие воздушного винта левого вращения на самолетах Як-52 и Як-
55
Реакция самолета, возникающая при отклонении рулей из-за действия гироскопического момента воздушного винта, зависит от направления перемещения капота самолета (Рис. 5).
Таким образом, направление перемещения капота самолета относительно горизонта при действии гироскопического момента воздушного винта находится путем перемещения его на 90° вокруг оси воздушного винта в сторону вращения.
Влияние гироскопического момента воздушного винта в полете компенсируется отклонением элеронов и руля направления (чаще руля направления) в соответствующую сторону, создавая момент, противоположный гироскопическому.
Например, на самолетах Як-52 и Як-55 при взятии ручки управления на себя возникающий момент парируется отклонением руля направления вправо (нажатием на правую педаль).

АЭРОДИНАМИКА САМОЛЕТА
АЭРОДИНАМИЧЕСКИЕ ПЕРЕГРУЗКИ
Перегрузкой называется отношение равнодействующей всех сил (кроме веса), действующих на самолет, к весу самолета.
В связанной системе координат определены перегрузки:
n
х - продольная перегрузка;
n
у - нормальная перегрузка;
n
z - боковая перегрузка.
Полная перегрузка определяется по формуле
2 2
2
Z
У
X
n
n
n
n
+
+
=
(11.2)
Продольная перегрузка
n
х возникает при изменении тяги двигателя и лобового сопротивления.
Если тяга двигателя больше лобового сопротивления, то перегрузка положительная. Если же величина лобового сопротивления больше силы тяги двигателя, то перегрузка отрицательная.
Продольная перегрузка определяется по формуле
G
X
P
n
X

=
(11.3)
Боковая перегрузка
n
z возникает при полете самолета со скольжением. Но по величине боковая аэродинамическая сила Z очень мала. Поэтому в расчетах боковую перегрузку принимают равной нулю.
Боковая перегрузка определяется по формуле
G
Z
n
Z
=
(11.4)
Выполнение фигур пилотажа в основном сопровождается возникновением больших нормальных перегрузок.
Нормальной перегрузкой
n
у называется отношение подъемной силы к весу самолета и определяется по формуле
G
Y
n
У
=
(11.5)
Нормальная перегрузка, как видно из формулы (11.5), создается подъемной силой. В горизонтальном полете при спокойной атмосфере подъемная сила равна весу самолета, следовательно, перегрузка будет равна единице:
,
2 2
ГП
ГП
ГП
V
Cy
G
Y
ρ
=
=
откуда
1
=
=
G
Y
n
ГП
У
ГП
Рис. 6 Действие центробежной силы инерции на летчика а - при резком увеличении угла
атаки, б - при резком уменьшении угла атаки
В криволинейном полете, когда подъемная сила становится больше веса самолета, перегрузка будет больше единицы.
При движении самолета по криволинейной траектории центростремительной силой является, как уже говорилось, подъемная сила, т. е. давление воздуха на крылья. При этом величине центростремительной

АЭРОДИНАМИКА САМОЛЕТА
силы всегда сопутствует равная, но противоположная по направлению центробежная сила инерции, которая выражается силой давления крыльев на воздух. Причем центробежная сила действует подобно весу (массе), а так как она всегда равна центростремительной силе, то при увеличении последней возрастает во столько же раз. Таким образом, аэродинамическая перегрузка подобна увеличению веса самолета (летчика).
При появлении перегрузки летчику кажется, что его тело стало тяжелее.
Нормальная перегрузка делится на положительную и отрицательную. Когда перегрузка прижимает летчика к сиденью, то эта перегрузка положительная, если же отделяет его от сиденья и удерживает на привязных ремнях - отрицательная(Рис. 6).
В первом случае кровь будет отливать от головы к ногам, во втором случае - приливать к голове.
Как уже говорилось, увеличение подъемной силы в криволинейном движении равносильно увеличению веса самолета на ту же величину, тогда
,
2 2
S
V
Cy
G
ny
Y
ГП
P
P
P
ρ
=
=
(11.6) откуда
,
ГП
P
ГП
P
P
УP
Cy
Су
Y
Y
G
Y
n
=
=
=
(11.7) где
n
ур
- располагаемая перегрузка.
Из формулы (11.7) видно, что величина располагаемой перегрузки определяется запасом коэффициентов подъемной силы (запасов углов атаки) от потребного для горизонтального полета до его безопасного значения (Су
ТР
или Су
КР
).
Максимально возможная нормальная перегрузка может быть получена тогда, когда в полете на данной скорости и высоте полета будут полностью использованы возможности самолета по созданию подъемной силы. Эту перегрузку можно получить в том случае, когда самолет резко (без заметного уменьшения скорости полета) выводится на С
у

у макс
:
2 2
G
S
V
Cy
G
Y
n
МАКС
МАКС
y

=
=
ρ
(11.8)
Однако до такой перегрузки нежелательно доводить самолет, так как произойдет потеря устойчивости и срыв в штопор или штопорное вращение. По этой причине не рекомендуется на больших скоростях полета, особенно при выходе из пикирования, отклонять резко ручку управления на себя.
Поэтому максимально возможную или располагаемую перегрузку принимают меньшей по величине, чтобы предупредить выход самолета на режим тряски. Формула определения этой перегрузки имеет вид
)
85
,
0 8
,
0
(
макс
y
P
y
n
n
+
=
(11.9)
Для самолетов Як-52 и Як-55 графические зависимости располагаемых перегрузок от скорости полета показаны на Рис. 7, Рис. 8. При выполнении полетов на самолетах Як-52 и Як-55 располагаемая нормальная перегрузка в основном ограничена по прочностным характеристикам самолета.
Максимально допустимая эксплуатационная перегрузка для самолета Як-52:
с колесным шасси:
положительная +7; отрицательная -5;
с лыжным шасси:
положительная +5; отрицательная -3.
Максимально допустимая эксплуатационная перегрузка для самолета Як-55:
в тренировочном варианте:
положительная +9; отрицательная -6;
в перегоночном варианте:
положительная +5;

АЭРОДИНАМИКА САМОЛЕТА
отрицательная -3.
Рис. 7 Располагаемые перегрузки
самолета Як-52 при Н=1000 м
Рис. 8 Располагаемые перегрузки
самолета Як-55 при Н=1000 м
Превышение в полете этих перегрузок запрещается, так как могут появиться остаточные деформации в конструкции самолета.
При выполнении установившихся криволинейных маневров перегрузка зависит от запаса тяги силовой установки. Запас тяги определяется из условия сохранения заданной скорости в течение всего маневра.
Предельной перегрузкой по располагаемой тяге
n
у
ПРЕД
называется наибольшая перегрузка, при которой тяга силовой установки еще уравновешивает лобовое сопротивление. Она определяется по формуле
K
G
P
Cx
G
C
p
ny
P
У
p
ПРЕД
=

=
(11.10)
Предельная по располагаемой тяге перегрузка зависит от скорости и высоты полета, так как вышеуказанные факторы влияют на располагаемую тягу Рр и от скорости аэродинамическое качество К.
Для расчета зависимости n
у
ПРЕД
V необходимо иметь кривые Рр (V)для различных высот и сетку поляр.
Для каждого значения скорости с кривой Рр (V) снимают значения располагаемой тяги, определяют
,
gS
P
Cx
P
=
с поляры для соответствующей скорости V снимают величину коэффициента Су и рассчитывают по формуле (11.10).
При маневрировании в горизонтальной плоскости с перегрузкой меньше располагаемой, но более предельной по тяге самолет будет терять скорость или высоту полета.
ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ВЕЛИЧИНУ РАСПОЛАГАЕМОЙ НОРМАЛЬНОЙ
ПЕРЕГРУЗКИ.
С изменением высоты полета изменяется плотность воздуха, следовательно, изменяется и потребный коэффициент подъемной силы Су, поэтому, как следствие, изменяется и располагаемая нормальная перегрузка.
Располагаемая перегрузка у земли при полете со скоростью V
ГП
равна
2 2
0 0
G
S
V
Cy
ny
ГП
ТР
PH
ρ
=
=
(11.11)
При полете на другой высоте при той же скорости горизонтального полета располагаемая перегрузка n
УР
будет равна

АЭРОДИНАМИКА САМОЛЕТА
2 2
0
G
S
V
Cy
ny
ГП
ТР
H
ρ
=
(11.12)
Величина располагаемого коэффициента подъемной силы от высоты полета не зависит, следовательно, при том же полетном весе из формул (11.11) и (11.12) можно найти располагаемую перегрузку на высоте полета Н:
0 0
ρ
ρ
Н
У
У
РН
РН
n
n
=
=
(11.13)
Из формулы (11.13) видно, что с поднятием на высоту располагаемая перегрузка уменьшается и на практическом потолке возможен только горизонтальный полет, при котором n
у=1.
Для измерения перегрузки на самолете устанавливают прибор, получивший название
  1   2   3   4


написать администратору сайта