Алфавитная нумерация
Скачать 18.11 Kb.
|
Алфавитная нумерация Греки в течении одного-двух столетия сумели овладеть математическим наследием предшественников, но они не довольствовались усвоением знаний; греки создали абстрактную и дедуктивную математику. Они были, прежде всего, геометрами, имена которых и даже сочинения дошли до нас. Это Фалес Милетский, школа Пифагора, Гиппократ Хиоский, Демокрит, Евдокс, Аристотель, Евклид, Архимед, Аполоний. Милетская школа, заложившая основы математики как доказательной науки - одна из первых древнегреческих математических школ. Она существовала в Ионии в конце V-IV вв. до н.э; основными деятелями ее являлись Фалес (ок.624-547 гг. до н.э.), Анаксимандр (ок. 610-546 гг. до н.э.) и Анаксимен (ок.585-525 гг.до н.э.). Основоположником пифагорийской школы был Пифагор Самосский (580-500 до н.э.). Главной заслугой пифагорейцев в области науки является существенное развитие математики, как по содержанию, так и по форме. По содержанию -- открытие новых математических фактов. По форме -- построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах. Дедуктивное построение геометрии явилось мощным стимулом её дальнейшего роста. Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга. Наличие у пифагорейцев учения о параллельных линиях говорит о том, что они владели методом доказательства от противного и впервые доказали теорему о сумме углов треугольника. Вершиной достижений пифагорейцев в планиметрии является доказательство теоремы Пифагора. Числа у пифагорейцев выступают основополагающими универсальными объектами, к которым предполагалось свести не только математические построения, но и все многообразие действительности. Физические, этические, социальные и религиозные понятия получили математическую окраску. Науке о числах и других математических объектах отводится основополагающее место в системе мировоззрения, то есть фактически математика объявляется философией. Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики. В середине V в. до н. э. появилась запись чисел нового типа, так называемая алфавитная нумерация.
Вавилонская нумерация В древнем Вавилоне примерно за 40 веков до нашего времени создалась позиционная нумерация, то есть такой способ записи чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой. В вавилонской поместной нумерации ту роль, которую у нас играет число 10, играет число 60, и потому эту нумерацию называют шестидесятеричной. Первой известной нам позиционной системой счисления была шестидесятеричная система вавилонян, возникшая примерно за 2500-2000 лет до н.э. Основанием ее служило число 60 следовательно, в ней должно было быть 60 цифр. Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившееся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Замечательные результаты были получены в области числовой алгебры. Решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степеней. Вавилонская система счисления является комбинацией шестидесятеричной и десятичной систем с применением позиционного принципа; в ней используются всего два разных символа: один обозначает единицу, второй - число 10; все числа записываются при помощи этих двух символов с учетом позиционного принципа. В самых древних текстах (около 1700 г. до н.э.) не встречается никакого символа для обозначения нуля; таким образом, численное значение, которое придавалось символу, зависело от условий задачи, и один и тот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600
Арабская нумерация Из арабского языка заимствовано и слово «цифра» по-арабски "сыфр"), означающее буквально "пустое место". Это слово применялось для названия знака пустого разряда, и этот смысл сохраняло до XVIII века, хотя еще в XV веке появился латинский термин "нуль" (nullum-ничто).Это, самая распространенная на сегодняшний день нумерация, которой мы пользуемся в настоящее время. В России арабская нумерация стала использоваться при Петре I (до конца XVII века сохранилась славянская нумерация). В целом же математика прошла гигантский путь в этот период от зарождения счета на пальцах до сложнейших теорем. Период элементарной математики
Период создания математики переменных величин В XVII в. начинается новый период истории математики - период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.
Современная математика
|