Главная страница
Навигация по странице:

  • Простой ШИМ-модулятор.

  • Несимметричный или дифференциальный

  • Выходной MOSFET каскад и драйвер

  • Мощность рассеивания и правильный выбор MOSFET транзистора

  • Выходной фильтр

  • Печатная плата

  • Анализ технического задания


    Скачать 1.3 Mb.
    НазваниеАнализ технического задания
    Дата04.07.2022
    Размер1.3 Mb.
    Формат файлаdocx
    Имя файла11111.docx
    ТипАнализ
    #624258
    страница2 из 4
    1   2   3   4

    Каскад ШИМ-модулятора

    ШИМ сигнал можно получить с помощью как аналоговой, так и цифровой схемы, точно так же, как аналоговым или цифровым может быть источник звука. Проще всего получить сигнал ШИМ сравнением треугольного напряжения со звуковым сигналом, как это показано на Рисунке 3. Если источник сигнала цифровой, превратить импульсно-кодовую модуляцию в ШИМ можно, используя цифровой сигнальный процессор. В любом случае, первостепенное значение для формирования ШИМ сигнала имеют величина джиттера и стабильность всех генераторов, так как несколько пикосекунд среднеквадратичного значения джиттера навсегда похоронят мечты о создании усилителя c отношением сигнал/шум лучше 100 дБ. В цифровых ШИМ системах добавляется ошибка квантования, порождаемая конечным числом уровней ШИМ.






    Простой ШИМ-модулятор.

    Методы формирования шумов совершенствовались на протяжении многих лет, в результате чего появились новые технологии, такие, как PDM (pulse-density modulation – плотностно-импульсная модуляция) и дельта-сигма модуляция, которые, теоретически, позволяют сместить спектр шумов дискретизации далеко за область полезных частот, где они могут быть эффективно подавлены фильтрами.

    Компаратор должен иметь большую скорость нарастания напряжения и, желательно, двухтактный выходной каскад. Хороший выбор – микросхема LMV7239, имеющая время задержки распространения сигнала 45 нс и время нарастания/спада 1.2 нс. Немаловажное значение имеет качество трассировки печатной платы, чтобы предотвратить возникновение «звона». Помимо этого, весьма критична топология распределения шин питания и развязывающих конденсаторов. Небрежность в этом вопросе может приводить к увеличению уровня джиттера выходного сигнала. Следует, также, избегать чрезмерной емкостной нагрузки на линию, соединяющую выход модулятора с драйвером MOSFET транзисторов.

    Несимметричный или дифференциальный?

    Прежде чем выбирать, каким будет выходной каскад, – несимметричным или дифференциальным, – очень важно понять влияние этого выбора на характеристики конструкции. Несимметричный режим выгоднее с точки зрения количества и цены компонентов, но для предотвращения постоянного смещения выхода потребуется развязывающий конденсатор. Кроме того, все колебания напряжения питания неизбежно передаются прямо на выход, еще более увеличивая уровень искажений. Поэтому использовать несимметричную схему без обратной связи невозможно.

    Дифференциальный режим затратнее, но дает много преимуществ, таких как меньший уровень четных гармоник, улучшенная устойчивость к колебаниям питающего напряжения, меньшая мощность, рассеиваемая каждым транзистором, и более простое решение задачи устранения постоянного смещения, не требующее развязывающих конденсаторов. Обратная связь может улучшить выходной сигнал, однако дифференциальная топология без обратной связи искажает сигнал намного меньше, чем несимметричная.

    Выходной MOSFET каскад и драйвер

    В схеме, изображенной на Рисунке 2, важны все элементы, но два из них оказывают наибольшее влияние на искажения выходного сигнала. Это MOSFET транзисторы и их драйвер. Качество звука очень зависит от формы импульсной последовательности, и любое отклонение ШИМ сигнала от идеального ухудшает его качество.

    Для этого каскада важны, и должны быть рассмотрены, многие характеристики MOSFET транзисторов:

    • ток управления и входная емкость;

    • мертвое время (что важно для исключения сквозных токов);

    • сопротивление открытого канала;

    • время включения/выключения.

    Любой из этих параметров влияет не только на качество звука, но и на рассеиваемую транзисторами мощность. «Мертвое время» – это задержка между выключением одного транзистора и включением другого, время, в течение которого оба транзистора выключены (или находятся в процессе выключения). При отсутствии мертвого времени, скорее всего, будет возникать ситуация, когда один транзистор выходного каскада уже открыт, а другой еще не закрыт, вследствие чего ток от положительной шины питания будет протекать к отрицательной шине напрямую через два открытых транзистора. Этот ток называется сквозным и должен быть минимизирован подбором соответствующего мертвого времени. Сквозной ток является основной причиной нелинейных искажений в системах класса D. Недостаточное мертвое время может ухудшить коэффициент нелинейных искажений на проценты. Выбор MOSFET транзисторов и симметрия плеч выходного каскада – важнейший момент в проектировании высококачественного усилителя.

    Ток управления затвором MOSFET транзистора должен соответствовать его емкости, чтобы иметь малые времена нарастания и спада импульсов на входе транзистора, которые, в свою очередь, обеспечат крутые фронты в выходном сигнале. В свою очередь, источник питания должен быть способен отдавать большие импульсные токи.

    Мощность рассеивания и правильный выбор MOSFET транзистора

    Транзисторы в переключающих каскадах класса D преобладающую часть времени полностью открыты или полностью закрыты, и рассеиваемая ими мощность минимальна. Как видно из Рисунка 1, в системах класса D используются двухтактные, каскады, в полу- или полномостовой конфигурации, выходными сигналами которых являются прямоугольные импульсы. При этом поочередно, равное время, открыт то один MOSFET транзистор, подключенный к положительной шине питания, то другой, подключенный к отрицательной шине. Теоретически, это могут быть два разных транзистора, с каналами N и P типа, но практически предпочтительнее использовать сдвоенные N-канальные транзисторы, обеспечивающие повышенную симметрию и лучшее мертвое время. Включенный MOSFET транзистор рассеивает очень небольшую мощность, являющуюся функцией прямого падения напряжения, зависящего, в свою очередь, от сопротивления открытого канала RDS(ON). Это имеет огромное значение, не только с точки зрения экономии энергии, но, прежде всего, с точки зрения габаритов схемы. К примеру, выходной каскад 100-ваттного усилителя класса A рассеивает в виде тепла мощность 300 Вт и требует очень больших транзисторов и теплоотводов, усилитель класса AB вполне можно сделать, используя транзисторы в корпусах TO3 и радиаторы традиционных размеров, а для усилителя класса D будет достаточно транзисторов в корпусах SOT223 или TO89. А это означает, что хороший усилитель мощности может иметь относительно небольшие размеры, которые, по мере развития технологии, будут постоянно уменьшаться, благодаря росту эффективности и снижению габаритов используемых приборов.

    Одна из распространенных ошибок заключается в том, что, стремясь к наивысшей эффективности, разработчики выбирают MOSFET транзисторы с наименьшим значением RDS(ON) и ожидают, что транзисторы будут совершенно холодными. В реальности все может быть совершенно по-другому.

    Транзисторы с самым низким сопротивлением RDS(ON) имеют большую входную паразитную емкость. Управлять затвором транзисторов с большой емкостью намного труднее, приходится ограничивать частоту переключения, а это, в свою очередь, увеличивает время нарастания и спада импульсов. Поэтому нужно пытаться выбирать транзисторы с небольшой входной емкостью, чтобы облегчить управление транзистором. В общем случае, для MOSFET транзисторов с низким сопротивлением RDS(ON) характерна прямая связь входной емкости с пробивным напряжением сток-исток, т.е., при уменьшении емкости уменьшается и напряжение. Выбор оптимального транзистора должен начинаться с сопоставления пробивного напряжения VDSS и требуемых характеристик схемы. Далее следует убедиться, что транзистор имеет приемлемую, с точки зрения потерь мощности, величину RDS(ON), но основным критерием должна быть минимальная входная емкость, которая позволяла бы упростить управление транзистором и облегчить режим работы драйвера затвора.

    Разработчик не должен пренебрегать коммутационными потерями, обусловленными паразитными емкостями дискретных элементов. Полная мощность, рассеиваемая MOSFET транзистором, выражается следующей формулой:

    PD = PRESISTIVE + PSWITCHING = RDS(ON) × ILOAD2 + (CRSS × V2 × FSW × ILOAD) / IGATE

    где

    ILOAD – ток нагрузки
    CRSS – емкость затвора
    V  – размах напряжения на нагрузке
    FSW – частота переключения
    IGATE – ток затвора

    К примеру, давайте представим, что для выходного каскада мощностью 100 Вт мы выбрали замечательный транзистор FDP047N10 фирмы Fairchild Semiconductor, имеющий RDS(ON) = 3.9 мОм и CRSS = 455 пФ, который управляется MOSFET драйвером с выходным током 1 А. Каскад нагружен сопротивлением 8 Ом, размах напряжения на нагрузке 50 В при частоте сигнала 100 кГц. Рассеиваемая транзисторами мощность не превысит:

    PD = 0.0039×5 А + (455×10–12×502×100×103×5 А) / 1 А = 0.0195 + 0.568 = 0.588 Вт

    Если же выбрать транзистор FDP3651U, той же фирмы, с параметрами RDS(ON) = 18 мОм и CRSS = 89 пФ, рассеиваемая мощность будет равна:

    PD = 0.018×5 А + (89×10–12×502×100×103×5 А)/1 А = 0.09 + 0.111 = 0.201 Вт

    Из приведенного примера несложно сделать заключение, что выбор MOSFET транзистора должен основываться не просто на величине сопротивления канала в открытом состоянии, а на оптимизации совокупности характеристик.

    Хорошим дополнением к транзистору FDP3651U может быть драйвер MOSFET транзисторов LM27222 фирмы National Semiconductor с адаптивной защитой от сквозных токов, потенциально позволяющий снизить «мертвое время» до 10 нс, а ширину импульса, при соответствующем выборе транзистора, до 30 нс.

    Выходной фильтр

    С завершением создания выходного каскада тяжелая работа еще не заканчивается. Очередной критический каскад, требующих серьезных усилий от разработчика – выходной фильтр. Фильтр должен убрать импульсы из выходного сигнала и сузить полосу сигнала, оставив лишь полезную, слышимую часть до 20 кГц. Некоторые конструкторы полагаются на естественную способность громкоговорителей отфильтровывать высокочастотные составляющие сигнала, но это делает результирующую передаточную функцию сильно зависящей от громкоговорителя. Серьезный разработчик, скорее всего, будет использовать пассивный фильтр с тщательно подобранными компонентами. Как правило, желательно иметь передаточную функцию с двумя полюсами, которую имеют, скажем, фильтры Баттерворта, Бесселя или Гаусса. Идеальная передаточная функция аудио фильтра в полосе звуковых частот должна иметь линейную фазовую характеристику, постоянную групповую задержку и эффективно ослаблять частоту ШИМ.

    Через выходной фильтр протекают большие токи с большой скоростью нарастания dI/dt. Это необходимо учитывать при выборе катушки, чтобы минимизировать искажения звука, обусловленные нелинейными эффектами, проявляющимися, когда сердечник катушки близок к насыщению. Для эффективного подавления частоты ШИМ и предотвращения паразитного авторезонанса частота собственного резонанса катушки должны быть выше частоты коммутации и нескольких ее гармоник. Использовать алюминиевые электролитические конденсаторы крайне нежелательно. Нужно выбирать из фторопластовых, полистирольных, поликарбонатных, или, даже, из полипропиленовых или майларовых конденсаторов. Некоторые из этих экзотических пленок достаточно дороги, зато предотвратят неприятную окраску звука, вносимую алюминиевыми конденсаторами.

    Печатная плата

    Большое значение имеет выбор правильной конструкции печатной платы, с минимальной паразитной индуктивностью проводников, в особенности тех, через которые протекает выходной ток, способный создавать крайне нежелательные эффекты. Вследствие своей импульсной природы, усилители класса D генерируют токи с большой скоростью нарастания dI/dt, которые вызывают как падение напряжения на паразитных элементах схемы, так, возможно, и «звон». Для управления этим явлением к выходу схемы могут добавляются демпфирующие цепи, а время нарастания импульсов, во избежание возникновения резонансных контуров, согласовывается с частотным спектром сигнала. Эти решения, безусловно, помогают решить проблему «звона», но, одновременно, ухудшают качество аудио сигнала и, поэтому, никогда не заменят хорошей трассировки платы, минимизирующей вариации импеданса на пути прохождения сигнала, и правильного выбора компонентов, учитывающего возможность возникновения паразитных явлений.

    Еще один критический момент в конструировании усилителя – распределение питания, фильтрация и развязки. Это важно для поддержания малозашумленного, постоянно стабильного напряжения на шинах питания, в особенности, в несимметричной конфигурации с полумостовым выходом, когда любые возмущения с частотой ниже частоты среза фильтра передаются на громкоговоритель.

    Есть еще множество параметров, мимо рассмотрения которых нельзя пройти при конструировании усилителя, но того, о чем рассказано в этой статье, должно быть достаточно, чтобы заложить добротную основу для разработки. Хорошая аудиосистема – это всегда продукт многомесячной работы, движения по пути, полному препятствий и компромиссов, движения, в которое вовлекаются ваши чувства и эмоции, в конце которого вас ожидает незабываемый момент.

    1.3 Описание схемы электрической принципиальной зарядного устройства с цифровым ампервольтметром и принцип её работы

    Предлагаемая в публикуемой статье любительская конструкция, выполненная в основном на микросхемах с применением элементов поверхностного монтажа, имеет сходную структуру и качественные показатели, поэтому ориентирована на работу в широкой полосе ЗЧ. Мощность этого усилителя (100 Вт) может быть существенно увеличена при повышении напряжения питания.

    Интерес к проектированию усилителя мощности (УМ) класса D появился у меня после разработки нескольких импульсных блоков питания. Возникла идея собрать простой и экономичный УМ. Эта тема не имела своего развития, пока на глаза не попался доклад Бруно Путзейса [1], инженера- разработчика фирмы Philips. Тогда же я прочитал статью Сергея Кузнецова [2] на ту же тему. Много информации и ценных советов мной получено на форуме сайта vegalab ru в теме "D class для саба".

    Естественно, предлагаемая конструкция не претендует на законченность или выдающиеся параметры, так как является полностью любительской. Но с уверенностью можно утверждать, что она проверена и не требует изготовления многослойной печатной платы.

    Главными критериями проекта были повторяемость, малая номенклатура использованных деталей, их доступность, возможность сборки в домашних условиях. В этой конструкции использованы в основном резисторы и конденсаторы типоразмеров 1206 и 0805 для поверхностного монтажа, а все комплектующие доступны для заказа через Интернет.

    Кроме того, после испытаний предыдущих версий такого УМ был введен узел защиты от КЗ, так как кратковременное замыкание или другое нештатное событие выводили из строя выходные транзисторы и микросхему драйвера, цена которых составляет существенную долю стоимости всего УМ.

    На рис. 1 показана структурная схема УМ класса D. Входной каскад с симметричной (балансной) схемой передачи сигнала обеспечивает высокую помехоустойчивость к наводкам со стороны источника сигнала и способствует балансировке цепи ООС с выхода усилителя в широкой полосе частот. Далее звуковой сигнал проходит по каскадам, работающим в переключательном режиме, обеспечиваемом цепью положительной обратной связи. Эти каскады содержат компаратор, фазоинвертор и драйвер, управляющий двухтактным выходным каскадом на мощных полевых транзисторах (ПТ). Устройство содержит ещё узлы стабилизации напряжения питания и смещения ПТ, а также узлы задержки включения и защиты от перегрузки.

    Свойства и особенности структуры усилителя целесообразно рассмотреть по принципиальной схеме, представленной на рис. 2. Здесь на микросхеме DA1 собран входной усилитель напряжения с балансным входом, отличающийся способностью компенсации синфазных наводок. УМ с балансным входом можно использовать в любом варианте — как инвертирующий входной сигнал, так и не инвертирующий. Коэффициент усиления плеч задаётся соотношением сопротивления резисторов R5 и R6, R7 и при использовании указанных номиналов равен 16 дБ. Элементами С2, R2, R4, С4 и С1, R1, R3, СЗ формируется АЧХ УМ. Симметричные сигналы с выходов ОУ DA1 (выводы 1 и 7) через резисторы R8, R9 поступают на входы компаратора DA2 (LM311P), куда поступает сигнал обратной связи через ucd-цепь ОС [1]. Элементы DA2, \/ТЗ— VT5, DA3, VT7, VT8 и некоторые другие образуют усилитель класса D, коэффициент усиления которого в полосе звуковых частот равен отношению сопротивления резисторов R15, R16 к R8, R9 соответственно. Для сохранения баланса (и равного коэффициента передачи в симметричных цепях) сопротивления резисторов R8 и R9, а также R15 и R16 должны быть попарно равны. Как указано в [1], коэффициент усиления 13 дБ (4,5 раза) является оптимальным.

    Так как драйвер DAЗ (IR2110) имеет раздельные входы управления верхним и нижним плечами выходного каскада, сигнал с выхода компаратора, который, по сути, является последовательностью импульсов, модулированных по длительности звуковым сигналом, поступает на фазоинвертор на транзисторах \/ТЗ, \/Т5, включённых по схеме дифференциального каскада. Для обеспечения его работы собран источник тока (1,2 мА) на элементах \/Т4, VDЗ. Ток задается резисторами R22, R23. Для облегчения теплового режима транзистора \/Т4 в цепь коллектора включён гасящий резистор R20. Кроме инвертирования сигнала, транзисторы VTЗ, \/Т5 выполняют важную функцию сдвига уровня напряжения. Так как вывод Ч„(общий сигнальный провод) микросхемы драйвера подключён к минусовому выводу блока питания, необходимо привести сигнал ШИМ от DA2 относительно общего провода устройства к уровню относительно — V.,. Сопротивления резисторов R21, R24 выбраны такими, чтобы напряжение управления на входах DAЗ не превышало 6 В (1,2 мА х 4,7 кОм). Микросхема DAЗ включена по стандартной схеме [3].

    Для исключения сквозного тока через транзисторы VT7, VT8 в цепи затворов установлены VR-цепи (VD7R40, VD8R41), ограничивающие ток зарядки ёмкости затворов. В данном устройстве применены полевые транзисторы (ПТ) IRF540Z. При применении в устройстве стабилитрона VD4 на 12 В напряжение управления для ПТ (VT8) будет составлять 12 — 1,5 = 10,5 В (транзистор \/Т6- составной). Сопротивление резисторов R40, R41 выбрано равным 10 Ом, потому что при меньшем значении происходит разогрев выходных транзисторов из-за возникновения сквозного тока. Время переключения мощных транзисторов равно 40 нс, а средняя мощность сигнала переключения на частоте 300 кГц равна 132 мВт.

    Согласно документации на микросхемы

    ОАЗ — DA5, суммарный

    ток потребления от стабилизатора на транзисторе \/Т6 составит око- ЕА1 NE5532 06 ло 0,15 А. Соответственно, при напряжении

    питания УМ +7 — 30 В на

    этом транзисторе при 10мкх

    напряжении питания

    драйвера 10,5 В рассеивается мощность

    около 3 Вт.

    Первоначально устройство защиты было (+)

    построено с датчиком

    тока в цепи стока одного из транзисторов. При превышении тока через датчик вырабатывался сигнал на отключение устройства. Но для контроля тока в десятки ампер сопротивление и мощность

    резистора датчика тока

    оказываются неприемлемыми. Лучшее решение контроль падения напряжения на канале ПТ в то время,

    когда он открыт.

    В интервале времени, когда транзистор

    VT8 открыт, напряжение на стоке близко к

    напряжению на минусовом проводе питания. Так, при токе I,=

    =15 А на стоке напряжение выше — V„на 1, R, =

    15Ах0,027 0м = 
    1   2   3   4


    написать администратору сайта