Главная страница

ЖБК 200 вопросов и ответов. Бетон, арматура и железобетон


Скачать 11.86 Mb.
НазваниеБетон, арматура и железобетон
АнкорЖБК 200 вопросов и ответов.doc
Дата07.02.2017
Размер11.86 Mb.
Формат файлаdoc
Имя файлаЖБК 200 вопросов и ответов.doc
ТипДокументы
#2374
страница4 из 53
1   2   3   4   5   6   7   8   9   ...   53

9. В ЧЕМ РАЗЛИЧИЕ МЕЖДУ МАРКАМИ И КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ?


Марка М – это средняя кубиковая прочность бетонаR в кг/см2; в про­екти­ровании железобетонных конструкций с 1986 г. не применяется, но в строительной практике по-прежнему имеет хождение. Класс В – это кубиковая прочность в МПа с обеспеченностью (доверительной вероятностью) 0,95. Как и любой другой материал, бетон обладает неоднородной прочностью – от Rmin до Rmax. Если изменчивость прочности представить в виде кривой нормального распределения (рис. 8), где n – число испытаний, то марка М будет соответствовать ее вершине, а класс В численно соответствует 0,0764М (при коэффициенте вариации 0,135). Например, В30 примерно соответствует М400.

10. ЧТО ТАКОЕ “МЯГКАЯ” И “ТВЕРДАЯ” АРМАТУРНАЯ СТАЛЬ?


“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (рис. 9,а) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях pl (предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.

“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IV и выше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (рис. 9,б), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется. В качестве границы безопасной работы принят условный предел текучести 02, при котором остаточные, т.е. пластические удлинения составляют 0,2 %. У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве , т.е. у них хуже пластические свойства, они более хрупкие. “Мягкая” и “твердая” сталь – понятия, разумеется, условные и в официальных документах отсутствуют, но они очень удобны в обиходе, потому их широко используют в научно-технической литературе.

11. НАСКОЛЬКО ВАЖНА ВЕЛИЧИНА УДЛИНЕНИй АРМАТУРЫ ПРИ РАЗРЫВЕ?


При малых удлинениях может произойти хрупкое (внезапное) обрушение железобетонной конструкции, даже при небольших перегрузках: арматура разорвется, когда прогибы малы, а раскрытие трещин незначительно – другими словами, когда конструкция не подает сигналов, предупреждающих о своем опасном состоянии. Поэтому арматура любого класса должна иметь величину равномерного относительного удлинения при разрыве , как правило, не менее 2 %.

12. В ЧЕМ РАЗЛИЧИЕ МЕЖДУ ТЕКУЧЕСТЬЮ СТАЛИ И ПОЛЗУЧЕСТЬЮ БЕТОНА?


Текучесть проявляется только по достижении определенных напряжений (pl), а ползучесть – при любых напряжениях. Деформации ползучести тем больше, чем выше напряжения в бетоне и чем продолжительнее действует нагрузка. Деформации текучести проявляются очень быстро, в течение всего нескольких минут, а деформации ползучести могут длиться годами.



Рис.9 Рис.10

13. ПОЧЕМУ ДЛЯ МОНТАЖНЫХ ПЕТЕЛЬ ПРИМЕНЯЮТ СТАЛЬ КЛАССА А-I И ПОЧТИ НЕ ПРИМЕНЯЮТ СТАЛЬ ДРУГИХ КЛАССОВ?


Вовсе не потому, что стержни А-I имеют гладкий профиль, а потому, что у этой стали самые высокие пластические свойства, которые позволяют загибать стержни с малыми радиусами кривизны. Если аналогичные петли изготавливать из “твердой” (высокопрочной) стали, то в них образуются трещины, которые приведут к излому петель, если не в процессе изготовления, то в процессе подъема самой конструкции, что особенно опасно.

14. ЧТО ТАКОЕ РЕЛАКСАЦИЯ напряжений СТАЛИ И КОГДА ОНА ПРОЯВЛЯЕТСЯ?


Релаксация заключается в том, что при зафиксированной деформации sp (например, в растянутом силой Р стержне, неподвижно закрепленном по концам) напряжения sp через некоторое время падают на величину sp (рис. 10). Релаксация – результат пластических свойств стали. У “твердой” стали она проявляется при напряжениях выше предела пропорциональности, у “мягкой” – выше предела текучести. Релаксацию учитывают при проектировании преднапряженного железобетона, когда определяют потери напряжений в натянутой арматуре.
1   2   3   4   5   6   7   8   9   ...   53


написать администратору сайта