биофизика мембран. Биофизика мембран. Электрогенез
Скачать 16.57 Kb.
|
Тема: Биофизика мембран. Электрогенез. 1.Клеточная мембрана-это ультратонкая пленка на поверхности летки или клеточной органеллы, состоящая из бимолекулярного слоя липидов с встроенными белками и полисахаридами. Функции клеточной мембраны: барьерная - обеспечивает селективный, регулируемый, пассивный и активный и активный транспорт веществ; матричная – обеспечивает определенное взаимное расположение и ориентацию мембранных ферментов относительно субстратов с целью реализации их оптимального взаимодействия; механическая – обеспечивает прочность и автономность клетки и внутриклеточных структур. Физические свойства клеточной мембраны: Плотность липидного бислоя составляет 800 кг/м3, что меньше, чем у воды. Размеры. По данным электронной микроскопии, толщина мембраны (L) варьирует от 4 до 13 нм, причем различным клеточным мембранам присуща разная толщина. Прочность. Предел прочности на разрыв для мембраны низок. В условиях организма средние деформации составляют около 0,01 %. Чтобы довести мембрану до разрыва, достаточно внутреннего давления 100 Па. Живая клетка может осуществлять осморегуляцию только за счет изменения своей формы, но не за счет растяжения мембраны.
Деформируемость. Клеточная мембрана легко подвергается деформации сдвига. Например, в потоке эритроцитов с градиентом скорости происходит вращение мембраны вокруг содержимого клетки. Это явление получило название «феномена гусеницы танка». Мембрана обладает высокой гибкостью. При оценке механических свойств мембраны эффективный модуль упругости принимается равным 0,45 Па. Вязкость. Липидный слой мембраны имеет вязкость η = 30-100 мПас (что соответствует вязкости растительного масла). Поверхностное натяжение равно 0,03-3 мНм-1, что на 2-3 порядка ниже, чем у воды (73 мНм-1). Коэффициент проницаемости мембранного вещества для воды равен 25-33х10-4 см/с. Мембрана - конденсатор. Двойной фосфолипидный слой уподобляет мембрану плоскому конденсатору, обкладки которого образованы электролитами внеклеточного и внутриклеточного (цитоплазмы) растворами с погруженными в них поверхностными белками и голов- ками липидных молекул. Обкладки разделены диэлектрическим слоем, образованным неполярной частью липидных молекул - двойным слоем их хвостов. Электроемкость 1 см2 мембраны составляет 0,5-1,3 мкФ. Напряженность электрического поля в мембране составляет приблизительно 20х106 В/м (расчет проведен для мембран митохондрий в задаче 2). Диэлектрическая проницаемость мембраны составляет: для фосфолипидной области ε = 2,0-2,2; для гидрофильной области ε = 10-20. Электросопротивление 1 см2 поверхности мембраны составляет 102-105 Ом (что в десятки миллионов раз больше сопротивления внеклеточной жидкости или цитоплазмы). Электроизоляционные свойства мембраны значительно превосходят свойства технических изоляторов. Жидкокристаллическое состояние. Молекулы в мембране размещены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты приблизительно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных головок. Физическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием.
Жидкокристаллические структуры очень чувствительны к изменению температуры. В мембранных фосфолипидах при понижении температуры происходит переход из жидкокристаллического в гельсостояние. При этом изменяется взаимное положение гидрофобных хвостов (рис. 11.5) и увеличивается толщина двойного слоя. При переходе в гель-состояние в бислое образуются сквозные каналы, радиусом 1-3 нм, по которым через мембрану могут переноситься ионы и низкомолекулярные вещества. Вследствие этого увеличивается ионная проводимость мембран. Увеличение ионной проводимости мембран может спасти клетку от криоповреждений за счет увеличения выхода воды и солей, что препятствует кристаллизации воды внутри клетки. |