Главная страница
Навигация по странице:

  • Производные моносахаридов

  • 2.3. Олигосахариды

  • 2.4. Гомополисахариды (ПС).

  • 2.5. Гетерополисахариды

  • Гиалуроновая кислота

  • Хондроитинсульфаты.

  • Кератансульфаты

  • Биохимия инет


    Скачать 2.33 Mb.
    НазваниеБиохимия инет
    Дата12.02.2020
    Размер2.33 Mb.
    Формат файлаdoc
    Имя файла1362e22.doc
    ТипДокументы
    #108208
    страница5 из 27
    1   2   3   4   5   6   7   8   9   ...   27

    1.6. Углеводы. Классификация углеводов


    Термин “углеводы”, предложенный в XIX столетии, был основан на предположении, что все углеводы содержат три элемента – углерод, водород и кислород, соотношение последних как в воде, и элементарный состав можно выразить формулой Сn (Н2О)m. Однако по мере открытия новых углеводов обнаружили, что не все они удовлетворяют этой формуле.

    Термин “углеводы” устарел и не отражает ни химической природы, ни состава этих соединений, однако предложенный для них термин "глициды” не получил распространения. Характерным отличительным признаком углеводов является наличие в их составе не менее двух гидроксильных групп и карбонильной (альдегидной или кетонной) группы, т. е. углеводы это полиоксикарбонильные соединения и их производные.

    Углеводы - наиболее распространенный в природе класс органических соединений. Функции углеводов в клетках весьма разнообразны. Они служат источником и аккумулятором энергии клеток, выполняя структурную роль, они в виде гликозамингликанов входят в состав межклеточного матрикса, участвуют во многих метаболических процессах.

    Моносахариды - это углеводы, которые не подвергаются гидролизу, т.е. не распадаются на более простые сахара. Олигосахариды - сложные углеводы, которые содержат от 2 до 10 остатков моносахаридов.

    Полисахариды являются высокомолекулярными соединениями, макромолекулы которых содержат сотни и тысячи моносахаридных остатков либо одного типа (гомополисахариды), либо разных типов (гетерополисахариды).

    2.2. Моносахариды

    В основе классификации моносахаридов лежат два признака:

    Наличие функциональных групп.

    Количество атомов углерода в составе моносахаридов.

    В зависимости от положения в молекуле карбонильной группы моносахариды разделяются на альдозы и кетозы. Альдозы содержат альдегидную группу, тогда как кетозы содержат кетогруппу.

     В  зависимости от числа углеродных атомов выделяются следующие группы моносахаридов: триозы, тетрозы, пентозы, гексозы, гептозы

    и т.д.

    Открытые (незамкнутые) формы моносахаридов изображаются в виде проекционных формул Фишера. Молекулы моносахаридов содержат несколько центров хиральности (С*) и принадлежат к соединениям L- или D-ряда.

    Относительная конфигурация моносахаридов определяется по конфигурационному стандарту – глицериновому альдегиду.

    Моносахариды относятся к D-ряду, если ОН-группа при нижнем хиральном атоме углерода стоит справа и к L-ряду, если ОН группа стоит слева. Поэтому гидроксил, стоящий при нижнем хиральном атоме, называется D-, L-определяющим.

    В водном растворе находятся как открытые, так и циклические формы моносахаридов. Циклические формы пятичленные (фуранозные) и шестичленные (пиранозные) гетероциклы.

    Названия циклов происходят от названия родственных соединений – фурана и пирана

    Циклические формы моносахаридов являются полуацеталями. Они образуются за счет внутримолекулярного взаимодействия между карбонильной и гидроксильной группами моносахарида. В циклической форме возникает новый центр хиральности,а также новый гидроксил – полуацитальный. Это приводит к образованию еще пары изомеров, которые называются аномерами.

    Для циклических форм моносахаридов приняты перспективные формулы Хеуорса, в которых циклы изображаются в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагается в пиранозном цикле в дальнем правом углу, в фуранозном – за плоскостью цикла. Символы атомов углерода в циклах не пишутся.

     

     

     

     

     

    Для перехода от Фишеровских проекционных формул к формулам Хеуорса нужно иметь в виду следующее: атомы и группы атомов находящиеся в формулах Фишера слева от углеродной цепи, в формулах Хеуорса располагаются над плоскостью цикла; заместители расположенные справа – под плоскостью.

    Учитывая выше изложенное наиболее важные моносахариды в формулах Хеуорса имеют следующий вид.

     

     

    Производные моносахаридов

    Модификация имеющихся групп или введение новых заместителей в молекулу моносахаридов дает различные их производные. Они используются для построения разнообразных полимерных углеводов. Некоторые из производных являются промежуточными продуктами обмена.

     

    Сиаловые кислоты во многом определяют взаимодействие лиганда с рецепторами клеточных мембран. Изменение содержания сиаловых кислот на клеточной поверхности сопровождает дифференцировку клеток и развитие патологического процесса. Избыточным количеством сиаловых кислот на поверхности мембран объясняют многие свойства опухолевых клеток, десиалирование рецепторов мембран гепатоцита приводит к развитию атеросклероза.

    2.3. Олигосахариды

    К олигосахаридам относятся сложные углеводы, имеющие от 2 до 10 звеньев моносахаридов соединенных гликозидными связями. Среди наиболее распространенных олигосахаридов следует отметить дисахариды – мальтозу, лактозу, сахарозу. Они отличются друг от друга составом моносахаридов, типом гликозидной связи, свойствами.

    Лактоза и мальтоза относятся к восстанавливающим дисахаридам. Гликозидная связь в них образуется за счет полуацетальной (гликозидной) ОН-группы одного моносахарида и спиртовой группой другого моносахарида. В этих дисахаридах имеется свободная полуацетальная окси-группа. Они обладают восстанавливающими свойствами, т.е. дают положительную реакцию Троммера с гидроксидом меди (II), что сопровождается образованием осадка кирпично-красного цвета (оксида меди-I-(Сu2О)).

    В отличие от мальтозы и лактозы сахароза относится к невосстанавливающим дисахаридам, т.к. гликозидная связь в молекуле сахарозы образуется за счет полуацетальных ОН-групп обоих моносахаридов. Поэтому сахароза не содержит свободного гликозидного гидроксила, она не может переходить в открытую карбонильную форму и поэтому не дает реакции на альдегидную группу (реакцию Троммера).

    Мальтоза (солодовый сахар) образуется при расщеплении крахмала в кишечнике. Содержится в больших количествах в солоде и солодовых экстрактах, отсюда и получила свое название "солодовый сахар". В растворе мальтоза может быть в открытой и циклической форме. Мальтоза состоит из остатков ?, D-глюкопиранозы и D-глюкозы, связь между ними ? (1> 4) гликозидная.

    Лактоза – молочный сахар; важнейший дисахарид молока. В коровьем молоке содержится до 5% лактозы, в женском молоке – до 8%. Лактоза состоит из ?, D-галактопиранозы и D-глюкозы, связь ?-1,4-гликозидная, поскольку в лактозе содержится свободный полуацетальный гидроксил, она относится к восстанавливающим сахарам

    Лактоза применяется в фармацевтической промышленности при изготовлении порошков и таблеток, т.к. она менее гигроскопична чем сахар

     

    Сахароза - растворимый дисахарид сладкого вкуса. Содержится в сахарной свекле, сахарном тростнике. Сахароза не содержит свободного полуацетального гидроксила, поэтому относится к невосстанавливающим сахарам.

     

     

    2.4. Гомополисахариды (ПС).

    Структурные различия между полисахаридами определяются:

    -         строением моносахаридов, составляющих цепь

    -         типом гликозидных связей, соединяющих мономеры в цепь

    -         последовательностью остатков моносахаридов в цепи.

    В зависимости от строения остатков моносахаридов полисахариды делятся на гомополисахариды, макромолекулы которых состоят из моносахаридных остатков одного вида, гетерополисахариды содержат разные моносахариды.

    В зависимости от выполняемых функций ПС делят на 3 группы:

    -         резервные ПС, выполняющие энергетическую роль. Эти ПС служат источником глюкозы. ПС менее растворимы чем моносахариды, следовательно они не влияют на осмотическое давление и поэтому могут накапливаться в клетке, например, крахмал – в клетках растений, гликоген – в клетках животных;

    -         структурные ПС;

    -         ПС, входящие в состав межклеточного матрикса, принимают участие в образовании тканей, а также в пролиферации и дифференцировке клеток. ПС межклеточного матрикса водорастворимы и сильно гидратированы.

    К гомополисахаридам относятся крахмал, гликоген, клетчатка.

    Крахмал – главный резервный полисахарид растений, образуется в растениях в процессе фотосинтеза и запасается в клубнях картофеля, зернах злаковых растений до 45%от массы сухого вещества. Крахмал представляет собой смесь двух полисахаридов, построенных из остатков альфа, D-глюкопиранозы: амилозы (10-20%) и амилопектина (80-90%), общая формула крахмала (С6Н10О5)n.

    Амилоза имеет линейное строение, остатки ?, D- глюкопиранозы в ней соединены с помощью ? (1> 4) гликозидных связей.

    Длина цепей 200-300 звеньев молекулярная масса 160 тыс Д. Макромолекула амилозы свернута в спираль.

     

     

    Синяя окраска при добавлении йода к раствору крахмала обусловлена наличием такой спирали.

    Амилопектин – разветвленный полисахарид с молекулярной массой около 1 млн. Да примерно через 20-25 моносахаридных звеньев у него имеются точки ветвления, образованные альфа (1> 6)-гликозидными связями. Коллоидные растворы амилопектина дают с йодом красно-фиолетовое окрашивание.

     

     

     

    Гликоген – представляет главный энергетический и углеводный резерв человека и животных. Особенно велико его содержание в печени (до 10%) и мышцах (до 4 %).

    Гликоген – это разветвленный полимер, образованный остатками ?, D-глюкопиранозы. В цепи связи между ними ? (1> 4)-гликозидные, а в точках ветвления альфа (1> 6)-гликозидные, т.е. гликоген напоминает амилопектин, однако он имеет большую степень ветвления чем амилопектин и придает ему большую компактность. Молекулярная формула гликогена (С6Н10О5)n.

    Целлюлоза (клетчатка) – основной структурный полисахарид растений. Она нерастворима в воде, химически инертна. Целлюлоза состоит из остатков бета – глюкопиранозы. Связи между ними ? (1> 4)-гликозидные. Целлюлоза не перваривантся в организме человека, так как в пищеварительном тракте нет ферментов, гидролизующих ? (1> 4)-гликозидные связи, однако она необходима как компонент для нормального пищеварения.

    2.5. Гетерополисахариды

    Гликозамингликаны – линейные отрицательно заряженные гетерополисахариды. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах (мукоза) и придавали этим секретам вязкие смазочные свойства. Эти свойства обусловлены тем, что гликозамингликаны могут связывать большие количества воды, в результате чего межклеточное вещество приобретает желеобразный характер.

    Гликозамингликаны представляют собой длинные неразветвленные цепи гетерополисахаридов, построеныые из повторяющихся дисахаридных единиц – димеров. Одним мономером этих димеров является гексуроновая (глюкуроновая, галактуроновая) кислота, вторым мономером могут быть гексозамины (глюкозамин или галактозамин), аминогруппа которых обычно ацетилирована.

    Основными гликозамингликанами являются: гиалуроновая кислота, хондроитинсульфаты, кератансульфаты, гепарин.

    Гиалуроновая кислота построена из повторяющихся единиц, включающих глюкуроновую кислоту и N - ацетилглюкозамин .

    Гиалуроновая кислота связывает воду, поэтому межклеточное пространство приобретает характер желеобразного «матрикса», способного поддерживать клетки. Структура гиалуроновой кислоты в виде геля является своеобразным биологическим фильтром, задерживая крупные частицы и молекулы, попавшие в организм. В клетках организма содержится специальный фермент – гиалуронидаза, который, выделяясь в межклеточное пространство, может повышать межклеточную проницаемость. Поэтому гиалуронидазу называют фактором проницаемости. В здоровом организме гиалуроновая кислота и гиалуронидаза находятся в равновесии. При некоторых заболеваниях активность фермента повышается и гиалуроновая кислота разрушается. Гиалуронидазу секретируют некоторые патогенные микроорганизмы, это способствует распространению патологического роцесса на соседние ткани. Препараты этого фермента используются в медицинской практике для рассасывания рубцов.

    Глюкуроновая кислота содержится в разных органах. Много ее в коже, стекловидном теле глаза, хрящах, синовиальной жидкости суставов. В тканях и жидкостях ГК образует комплекс с белком. Однако доля белка колеблется от 2 до 20 – 30 %.

    Хондроитинсульфаты.

    Это гетерополисахариды линейного строения, состоящие из большого количества димерных фрагментов, в состав которых входят 2 углеводных компонента: глюкуроновая кислота и сульфатированный N – ацетилгалактозамин.

    Гепарин состоит из повторяющихся единиц, содержащих глюкуроновую кислоту, и N – ацетилглюкозамин, сульфатированный в 4 – или 6 – положении глюкозного остатка.

    Гепарин – естественный антикоагулянт (противосвертывающее средство), синтезируется в печени. Он обнаруживается на поверхности многих клеток, однако является внутриклеточным компонентом тучных клеток.

    В отличие от остальных гетерополисахаридов, гепарин не является структурным компонентом межклеточного вещества. Он вырабатывается тучными клетками соединительной ткани и выделяется при их распаде (цитолизе) в межклеточное пространство и кровеносное русло. В крови гепарин нековалентно соединяется со специфическими белками. Комплекс гепарина с гликопротеинами плазмы прявляет противосвертывающую активность.

    Кератансульфаты – наиболее гетерогенные гликозамингиканы, отличаются друг от друга по суммарному содержанию углеводов и распределению в разных тканях. Кератансульфаты обнаружены в роговице глаза, хрящевой ткани, костях, межпозвонковых дисках

    Предыдущий раздел

    Раздел верхнего уровня

    Следующий раздел


    1   2   3   4   5   6   7   8   9   ...   27


    написать администратору сайта