Изучение четырехполюсников, сигналов и их спектров. Четырёхполюсник
Скачать 27.55 Kb.
|
9.07.2020 Изучение четырехполюсников, сигналов и их спектров Четырёхпо́люсник — электрическая цепь, разновидность многополюсника, имеющая четыре точки подключения. Как правило, две точки являются входом, две другие — выходом. инейный активный четырехполюсник можно описать различными способами и представить схемами замещения. Есть два подхода к такому описанию, а именно: с использованием внутренних параметров четырехполюсника и с использованием внешних (по отношению к источнику сигнала и нагрузке) параметров. В первом случае записываются уравнения, связывающие токи и напряжения непосредственно, независимо от назначения устройства. Во втором случае, параметры схемы замещения определяются условием работы и назначением устройства (усилитель тока, усилитель напряжения или мощности). Здесь важными являются такие параметры как коэффициенты передачи по току, напряжению или мощности, входное и выходное сопротивления. Их обычно определяют исходя из знания внутренних параметров четырехполюсника и его схемы замещения. Для четырехполюсников в принципе можно составить шесть систем из пар уравнений, связывающих входные и выходные токи и напряжения, коэффициентами которых являются соответствующие внутренние параметры. В качестве примеров четырехполюсников можно привести трансформатор и усилитель. Четырехполюсниками являются электрические фильтры, усилительные устройства радиопередатчиков или радиоприемников, линия междугородной телефонной связи и т. д. Все эти устройства, имеющие совершенно "непохожие" схемы, обладают рядом общих свойств. На рис. 12.1 использованы символические обозначения напряжений и токов, что справедливо при анализе четырехполюсника в режиме гармонических колебаний. Если же используется источник периодических негармонических или непериодических колебаний, то можно воспользоваться спектральным представлением напряжений и токов. Подобное представление будем широко использовать при анализе частотных характеристик четырехполюсников. В необходимых случаях обращаться к операторным изображениям Uг(p), U1(p), U2(p), I1(p) и I2(p), которые легко получить, заменяя оператор jw на оператор р. Различают четырехполюсники линейные и нелинейные. Линейные четырехполюсники отличаются от нелинейных тем, что не содержат нелинейных элементов (НЭ) и поэтому характеризуются линейной зависимостью напряжения и тока на выходных зажимах от напряжения и тока на входных зажимах. Примерами линейных четырехполюсников являются электрический фильтр, линия связи, трансформатор без сердечника; примерами нелинейных - преобразователь частоты (содержащий диоды) в радиоприемнике, выпрямитель переменного тока, трансформатор со стальным сердечником (при работе с насыщением стали). Усилитель, содержащий НЭ (например, триоды), может являться как линейным, так и нелинейным четырехполюсником в зависимости от режима его работы (на линейном или нелинейном участке характеристик триодов). Четырехполюсники бывают пассивными и активными. Пассивные схемы не содержат источников электрической энергии, активные - содержат. Последние могут содержать зависимые и независимые источники. Примером активного четырехполюсника с зависимыми источниками может служить любой усилитель; примером пассивного - LC-фильтр. В зависимости от структуры различают четырехполюсники мостовые (рис. 12.2, а) и лестничные: гобразные (рис. 12.2, б), тобразные (рис. 12.2, в), побразные (рис. 12.2, г). Промежуточное положение занимают тобразномостовые (тперекрытые) схемы четырехполюсников (рис. 12.2, д). Четырехполюсники делятся на симметричные и несимметричные. В симметричном четырехполюснике перемена местами входных и выходных зажимов не изменяет напряжений и токов в цепи, с которой он соединен. Четырехполюсники, кроме электрической симметрии, могут иметь структурную симметрию, определяемую относительно вертикальной оси симметрии. Так, тобразный, побразный и тперекрытый четырехполюсники (рис. 12.2) имеют вертикальную ось симметрии при Z1 = Z3. Мостовая схема структурно симметрична. Очевидно, четырехполюсники, симметричные в структурном отношении, обладают электрической симметрией. Четырехполюсники могут быть уравновешенными и неуравновешенными. Уравновешенные четырехполюсники имеют горизонтальную ось симметрии (например, мостовая схема на рис. 12.2, а) и используются, когда необходимо сделать зажимы симметричными относительно какой либо точки (например, земли). Можно сделать уравновешенной любую из лестничных схем четырехполюсников. Четырехполюсники также делятся на обратимые и необратимые. Обратимые четырехполюсники позволяют передавать энергию в обоих направлениях; для них справедлива теорема обратимости или взаимности, в соответствии с которой отношение напряжения на входе к току на выходе не меняется при перемене местами зажимов. |