Главная страница

отливки из серого и белого чугуна. реферат Серый чугун. Ковковый чугун. Чугун это сплав железа с углеродом и другими элементами, содержащий более 2,14% C


Скачать 0.91 Mb.
НазваниеЧугун это сплав железа с углеродом и другими элементами, содержащий более 2,14% C
Анкоротливки из серого и белого чугуна
Дата30.03.2023
Размер0.91 Mb.
Формат файлаdocx
Имя файлареферат Серый чугун. Ковковый чугун.docx
ТипРеферат
#1025363

Содержание






Введение


Чугун - это сплав железа с углеродом и другими элементами, содержащий более 2,14% C.

В металлургическом производстве чугун выплавляют в доменных печах. Получаемый чугун подразделяется на: конверсионный, специальный (ферросплавы) и литейный. Конвертирующий и специальный чугуны используются для последующей обработки в сталь. Чугун (около 20% всего чугуна) отправляется на машиностроительные заводы для использования при изготовлении литых деталей (отливки).

Чугун конструкционный нелегированный для производства отливок в машиностроении имеет следующий химический состав, %: 2,0 - 4,5 С; 1,0 - 3,5 Si; 0,5-1,0 Мп; содержание примесей: не более 0,3% S; не более 0,15% S.

Широкое применение чугуна в промышленности обусловлено оптимальным сочетанием различных свойств: технологических (литейные, обрабатываемость), эксплуатационных (механические и специальные) и технико-экономических показателей.


1. Классификация чугуна

1.1Классификация чугуна проводится по следующим критериям:


Классификация чугунов

Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения - цементита Fe 3 C), но и в свободном состоянии - в виде графита. В этом случае форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугуна и их свойства.

Классификация чугуна с различными формами графита производится по ГОСТ 3443-77. Специально разработанные шкалы используются для оценки формы включений графита, их размера, характера распределения и количества, а также типа металлической основы.

Классификация чугуна проводится по следующим критериям:

-по состоянию углерода - свободный или связанный;

-в виде включений графита - пластинчатых, червеобразных, шаровидных, чешуйчатых (рис. 30);

-по типу структуры металлической основы (матрицы) - ферритная, перлитная; также есть чугуны со смешанной структурой: например, ферритно-перлитные;

-по химическому составу - чугуны нелегированные (общего назначения) и легированные (специальные)[1].

В зависимости от формы выделения углерода в чугуне различают:

-белый чугун, в котором весь углерод связан в виде цементита Fe 3 C;

-полужирный чугун, в котором основное количество углерода (более 0,8%) находится в виде цементита;

-серый чугун, в котором весь или большая часть углерода свободна в виде пластинчатого графита;

-беленый чугун, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой белый;

-ковкий чугун, в котором графит имеет сферическую форму;

-ковкий чугун, полученный из белого путем отжига, в котором углерод переходит в свободное состояние в виде чешуйчатого графита.

Структура и свойства чугуна

Микроструктура чугуна состоит из металлической основы (матрицы) и включений графита. Свойства чугуна определяются свойствами металлической основы и природой включений графита[1].

Чугуны содержат следующие конструктивные элементы:

графит (G);

перлит (П);

феррит (F);

ледебурит (L);

фосфидная эвтектика.

По микроструктуре различают:

белый чугун I (C + G);

серый перлитный чугун II (P + G);

серый ферритный чугун III (F + G);

полукруглый чугун II a (P + C + G);

высокопрочный чугун IV (П + шаровидный графит).

Формирование микроструктуры чугуна зависит от его химического состава и скорости охлаждения (толщины) отливки. Структура металлической основы определяет твердость чугуна.

Углерод в чугуне может присутствовать в виде химического соединения - цементита Fe 3 C, графита или их смеси. По сравнению с металлической основой графит имеет низкую прочность. Места его возникновения можно рассматривать как нарушения сплошности металла. Чугун как бы пронизан включениями графита, ослабляющими его металлическую основу. По мере того как графитовые включения имеют округлую форму (из-за модификации чугуна добавками SiCa, FeSi, Al, Mg), их отрицательная роль как срезов в металлической основе уменьшается, а механические свойства чугуна повышаются.

Например, серый чугун (пластинчатая форма графита) имеет низкие механические свойства, поскольку пластины с включениями графита играют роль концентратов напряжений в отливке. Однако серый чугун имеет ряд преимуществ: он имеет высокую текучесть и низкую усадку отливки; включения графита делают стружку хрупкой, что облегчает резку чугуна; за счет смазывающего действия графита чугун обладает хорошими антифрикционными свойствами; хорошо гасит колебания и резонансные колебания. Из высокопрочного чугуна (шаровидный графит) изготовлены ответственные детали: шестерни, коленчатые валы.

Кремний способствует графитизации чугуна. Изменяя его состав и скорость охлаждения отливки, можно получать чугун различной структуры.

Марганец предотвращает графитизацию и нейтрализует вредное действие серы, образуя с ней тугоплавкие соединения MnS.

Фосфор не оказывает существенного влияния на процесс графитации. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики, что повышает его литейные свойства.

Сера - вредная примесь. Это вызывает ухудшение литейных свойств чугуна, увеличение усадки, увеличение склонности к растрескиванию и снижение температуры красной хрупкости чугуна[1].

1.2Серый чугун


Серый чугун - это сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор и серу. Углерод в серых чугунах преимущественно представлен в виде пластинчатого графита.

Структура отливок определяется химическим составом чугуна и технологическими особенностями его термической обработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размера включений графита. Металлическая матрица чугунов по своим свойствам близка к свойствам стали. Графит, имеющий низкую прочность, снижает прочность чугуна. Чем меньше включений графита и чем выше их дисперсность, тем выше прочность чугуна. Включения графита вызывают снижение предела прочности чугуна. На прочность на сжатие и твердость чугуна практически не влияют частицы графита. Свойство графита образовывать смазочные пленки приводит к снижению коэффициента трения и увеличению износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость.

Согласно ГОСТ 1412-85, серый чугун обозначается буквами «С» - серый и «CH» - чугун. Цифра после буквенного обозначения указывает на средний предел прочности чугуна на разрыв. Например, СЧ 20 - серый чугун, предел прочности 200 МПа.

По своим свойствам серый чугун условно можно разделить на следующие группы:

ферритные и ферритно-перлитные чугуны (марки СЧ 10, СЧ 15) используются для изготовления неотзывчивых ненагруженных деталей машин;

чугуны перлитные (марки СЧ 20, СЧ 25, СЧ 30) используются для изготовления износостойких деталей, работающих в условиях высоких нагрузок: поршней, цилиндров, блоков цилиндров;

модифицированные чугуны (марки СЧ 35, СЧ 40, СЧ 45) получают добавлением ферросилициевых добавок перед заливкой в ​​жидкий серый чугун; такие чугуны имеют перлитную металлическую матрицу с небольшим количеством изолированных графитовых пластин.

Чугун с уплотненным графитом отличается от серого чугуна более высокой прочностью, повышенной теплопроводностью. Этот материал перспективен для изготовления ответственных отливок, работающих в условиях теплообмена (блоки цилиндров, поршневые кольца)[2].
Вермикулярный графит получают обработкой расплава серого чугуна лигатурами, содержащими редкоземельные металлы (РЗМ) и силикобарий.

Модификация серого чугуна магнием, а затем ферросилицием позволяет получить магниевый чугун (SMC), который имеет прочность стального литья и высокие литейные свойства серого чугуна. Применяется для изготовления деталей, подверженных ударам, переменным нагрузкам и интенсивному износу, например, коленчатых валов легковых автомобилей.

1.3Ковкий чугун


Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства за счет присутствия в структуре шаровидного графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет рабочий участок металлической основы и, что более важно, не оказывает на него сильного режущего действия, из-за чего концентраторы напряжений создаются вокруг включений графита в меньшей степени. Чугун с шаровидным графитом обладает не только высокой прочностью, но и пластичностью.

Ковкий чугун получают путем отжига белого чугуна определенного химического состава, характеризующегося пониженным содержанием графитирующих элементов (2,4-2,9% С и 1,0-1,6% Si), так как необходимо получить полностью отбеленный чугун в состояние литья. По всему сечению отливки, что обеспечивает образование чешуйчатого графита при отжиге (см. рисунок).

Механические свойства и рекомендуемый химический состав высокопрочного чугуна регламентируются ГОСТ 1215-79. Ковкие чугуны помечены буквами «K» - податливый, «H» H Угун и цифра. Первая группа цифр показывает предел прочности чугуна, вторая - его относительное удлинение при разрыве. Например, КЧ 33-8 означает: ковкий чугун с пределом прочности на разрыв 33 кг / мм 2 (330 МПа) и относительным удлинением при разрыве 8%.

Различают ковкий чугун с черным сердцем, полученный в результате графитизирующего отжига, и ковкий чугун, полученный обезуглероживающим отжигом в окислительной среде. Матрица чугуна может быть перлитной, ферритной или перлитно-ферритной в зависимости от режима отжига. Для ускорения процесса отжига CN используют различные методы: температуру выдержки увеличивают в течение периода P 2 , модифицируют и микролегируют добавками литого алюминия, бора, титана или висмута.

Ковкий чугун применяется для изготовления ответственных тонкостенных отливок малых и средних размеров, работающих в условиях динамических переменных нагрузок (детали приводных механизмов, редукторов, тормозные колодки, шестерни, ступицы)[2]. Однако ковкий чугун - бесперспективный материал в силу сложной технологии производства и длительности производственного цикла изготовления деталей из него.

Ковкий чугун производится из отливок белой разновидности изделий. В них углерод полностью связан железом и представлен карбидом железа (цементитом Fe3C.) (рисунок 1)
Рисунок 1 – цементит Fe3C

Углерод в этом виде чугуна присутствует в пределах от 2,4 до 2,8%. Также в него входят Si, Mn, S, P, количество которых зависит от необходимых свойств материала. Ковкий чугун производится из отливок белой разновидности изделий. В них углерод полностью связан железом и представлен карбидом железа (цементитом Fe3C). При отжиге заготовок при температуре 950-970оС, добиваются освобождения графита из карбида железа и аустенита (А). В результате он кристаллизуется, образуя вид хлопьев. Окончательное формирование графитовых хлопьев в чугуне происходит в температурном интервале 760–720оC, что продемонстрировано на диаграмме Fe–Fe3C.(рисунок 2)

Рисунок 2 – Первая стадия графитизации
На ней: А – это аустенит, представляющий твердые внедрения атомов углерода в структуру ячейки железа; Г– это графит; Ц – это цементит; П – перлит, представляющий соединение феррита и цементита в эвтектоидной области при распаде аустенита.

Процесс термического отжига проводится в два этапа:

1.Сначала заготовки нагревают до 950–1000оС и выдерживают в нагретом виде до окончания распада ледебурита (цементит + аустенит) на графит и аустенит.

2.Затем постепенно охлаждают заготовки до области температур 760–720оС, где аустенит дает дополнительный цементит (вторичный), входящий в состав перлита. При дальнейшем охлаждении происходит распад перлита на феррит и графит[3].

Разновидности ковкого чугуна

Структурный состав чугунных отливок зависит от условий технологии отжига. Он бывает:

-ферритным;

-перлитным;

-ферритно-перлитным.

Ферритный вид изделий содержит феррит и хлопьевидный графит. Перлитный вид состоит из перлита и хлопьевидного графита (рисунок 3). Ферритно – перлитный в своем составе имеет феррит, перлит и хлопья из графита. Структура каждого вида изображена на схемах:



Рисунок 3 – Структура перлитный вид графита
Чугун на основе перлита можно получить, если охлаждать отливку в зоне распада быстрее. Тогда, вместе с ферритом, в структуре будет находиться перлит. Он сохранится при дальнейшем, достаточно медленном, проведении охлаждения сплава ниже 727оС.

2 Область применения, строение

2.1 Серый чугун


Серым чугуном называется сплав железа, углерода и других элементов, в котором при затвердевании вместо ледебурита образуется железо – графитная эвтектика.

Серый чугун является самым дешевым из литейных материалов. Механические свойства чугуна зависят от величины зерна металла, от размера и характера распределения включений графита, а также от соотношения между общим, связанным и свободным углеродом (графитом). В обычном сером чугуне графит кристаллизуется в виде пластинок[4]. Эти пластинки в чугуне расчленяют основную металлическую массу и действуют как внутренние трещины. По этой причине серый чугун с пластинчатым графитом обладает низкой прочностью и лишен пластичности. Однако наличие графита в чугуне придает ему меньшую чувствительность к внешним надрезам.

Вследствие этого в чугунной отливке острые углы, резкие переходы, неметаллические включения, небольшие газовые раковины и поры лишь в очень малой степени понижают ее конструкционную прочность.

Чугун обладает способностью рассеивать колебания при переменных и вибрационных нагрузках. Это свойство называют циклической вязкостью. Благодаря высокой циклической вязкости серый чугун является хорошим конструкционным материалом, который во многих случаях может с успехом заменять более дорогостоящую сталь (например, для коленчатых валов). Кроме того, отдельные марки серого чугуна имеют достаточно высокую прочность. Все это объясняет широкое применение серого чугуна для изготовления разнообразных машиностроительных деталей.

Серые конструкционные чугуны представлены в стандарте 10 марками: СЧ 00, СЧ 12—38, СЧ 15—32, СЧ 18—36,СЧ 21—40, СЧ 24—44, СЧ 28—48, СЧ 32—52, СЧ 35—56, СЧ 38—60, где буквы СЧ означают «серый чугун», первое число определяет минимальный предел прочности при растяжении в кП мм 2, второе число — минимальный предел прочности при изгибе в кГ/мм2.

Химический состав чугунов ГОСТ не лимитирует. Это объясняется тем, что механические свойства чугунов зависят от многих факторов. Так, например, чугун одинакового состава в стенках отливки разной толщины имеет различные механические свойства; две одинаковые отливки, одна из которых получена в песчаной, а другая в металлической форме, а также отливки, полученные в одинаковых формах, но охлажденные с различной скоростью, будут обладать различными свойствами.

Даже в одной и той же стенке отливки механические свойства не везде одинаковы: в поверхностных слоях стенки прочность металла оказывается выше, а в центре сечения ниже.

В основу стандартизации серого чугуна заложен принцип регламентирования минимально допустимого значения временного сопротивления разрыву при растяжении. В соответствии с этим принципом обозначение марки чугуна содержит минимально допустимое значение В определенного в стандартной пробной литой заготовке. Механические свойства серого чугуна регламентируются ГОСТ 1412-85 и приведены в табл.1.2. Необходимо учитывать, что порядок подготовки и проведения механических испытаний серого и других чугунов отличаются от методов испытания стали. Например, для чугунных отливок контроль свойств проводят по ГОСТ 27208-87 «Отливки из чугуна. Методы механических испытаний», а способы получения заготовок для образцов из каждого чугуна регламентированы соответствующим стандартом (для серого – ГОСТ 24648 –81)[3].

K большинству чугунных отливок в силу особенностей их эксплуатации часто предъявляются различные условия, включающие другие (не предусмотренные ГОСТ 1412-85) требования по механическим свойствам, а также по физическим и теплофизическим показателям. На практике достаточно часто удается проследить связь между определенной группой физико-механических и теплофизических свойств чугуна и эксплуатационными показателями конкретного изделия. Наиболее часто встречающиеся показатели механических свойств серого чугуна, часть из которых не регламентируется ГОСТ 1412-85, приведены в табл.1.3-1.5[3].

Большое влияние на механические свойства чугуна имеет скорость охлаждения металла, а, следовательно, и толщина стенок отливок. В этом случае при оценке реальной прочности отливок рекомендуется изготавливать различного рода тестовые заготовки, которые соответствуют толщине отливок, и из них вырезать образцы для испытаний.

Как конструкционный материал серый чугун используются для широкого спектра изделий практически во всех отраслях машиностроительного комплекса. К числу наиболее крупных потребителей чугунного литья следует отнести автомобилестроение, станкостроение, тяжелое и металлургическое машиностроение, санитарно-техническую промышленность и пр.

В конструкции автомобилей и тракторов масса литых деталей из серого чугуна, например, составляет 15-25% от общей массы. Преимущественное применение серого чугуна обусловлено тем фактом, что в нем сочетаются высокая износостойкость и противозадирные свойства при трении с ограниченной смазкой, демпфирующая способность. Основная номенклатура изделий – это блоки, головки и гильзы цилиндров, крышки коренных подшипников двигателей, тормозные диски и диски сцепления, тормозные барабаны и другие детали, для которых серый чугун является оптимально технологичным и экономичным конструкционным материалом.

Блоки цилиндров карбюраторных и дизельных двигателей изготавливают из низколегированных чугунов марки СЧ20, СЧ25, которые обеспечивают в стенках отливок толщиной 15-25 мм В =200-250 Н/мм2, а в более тонких стенках до 270 Н/мм2. Такого же типа чугуны обычно применяют для головок цилиндров дизельных двигателей и гильз цилиндров карбюраторных и дизельных двигателей. Основными требованиями к чугуну для гильз являются: перлитная структура матрицы (не более 5% феррита), графит среднепластинчатый неориентированный, твердость в пределах 200-250 НВ. В конструкции автомобильных дизельных, карбюраторных, а также тракторных двигателей широко применяют гильзы цилиндров из специальных легированных чугунов, чаще всего – фосфористые.

Для блоков и головок цилиндров тяжело нагруженных дизельных двигателей (автомобильных и судовых) применяют специальные легированные чугуны, а для головок цилиндров – высокоуглеродистые (более 3,5% С) легированные термостойкие чугуны. Эти требования выполняются при использовании для отливки гильз низколегированных чугунов, химический состав которых выбирают с учетом технологии формы, метода плавки, сечения отливки.

Чугунные распределительные валы дизельных и карбюраторных двигателей (легированные чугуны марки СЧ 25 и СЧ 30) имеют высокую износостойкость и широко применяются в автомобилестроении. Легирование молибденом, хромом, никелем обеспечивает хорошую закаливаемость и про каливаемость чугуна, и заданную глубину отбеленного слоя (в отбеленных кулачках). Высокая твердость и износостойкость кулачков достигаются либо за счет поверхностной закалки чугуна, в структуре которого (в носике кулачков) имеются игольчатые карбиды, либо за счет поверхностного отдела чугуна в кулачках при кристаллизации в контакте с холодильником. Отбеленные кулачки предпочтительны в тяжелых условиях работы.

Тормозные диски, барабаны и нажимные диски сцепления, работающие в условиях сухого трения с высокими скоростями скольжения должны обеспечивать в паре с фрикционной пластмассой стабильный коэффициент трения и износостойкость. При многократных циклах торможения, во время которых в контакте фрикционной пары выделяется тепло, а затем быстро отводится, на поверхности чугунной детали образуются термические трещины, снижающие прочность. Для тормозных барабанов и дисков средней нагруженности чаще всего применяют серый чугун марки СЧ20 или СЧ25. В условиях высокой нагруженности деталей, когда на поверхности трения образуются термические трещины, применяют специальные высокоуглеродистые термостойкие чугуны с повышенным уровнем легирования. Для наиболее тяжелых условий работы рекомендуется использовать перлитные чугуны с вермикулярным графитом[4].

Маховики в процессе работы вращаются с частотой порядка 2500-8000 об/мин. Соответственно, в них возникают большие растягивающие напряжения, а поверхность маховика периодически трется о сопряженную рабочую поверхность. Трение с большими скоростями приводит к выделению тепла на поверхности трения, образованию усталостных термических трещин, снижающих прочность маховика. Требования повышенной прочности с учетом большой массы маховиков и толщины сечения обусловили применение для их изготовления серых чугунов марки СЧ25, СЧ30, СЧ35 (чем больше сечение отливки, тем выше марка). Выбранная марка чугуна должна обеспечивать получение в теле отливки прочности не ниже 200-250 Н/мм2. Если прочность чугуна СЧ 35 недостаточна для обеспечения условий работы маховиков, то необходимо применять чугуны с вермикулярным или шаровидным графитом. Крышки коренных подшипников из серого чугуна применяют в основном в карбюраторных двигателях легковых автомобилей. Для обеспечения перлитной структуры и твердости не менее 200 НВ крышки подшипников отливают из серого чугуна марки СЧ25. Для тяжело нагруженных карбюраторных двигателей и для дизельных двигателей применяют крышки подшипников из ковкого чугуна или чугуна с шаровидным графитом.

Выпускные коллекторы подвергаются воздействию горячих агрессивных выхлопных газов и в процессе работы подвержены окислению, термическим деформациям, а иногда - растрескиванию. Во многих случаях серый чугун является экономичным и достаточно долговечным материалом для этих деталей. Учитывая, что коллекторы имеют тонкие стенки (3-7 мм), их отливают из чугунов марки СЧ15, СЧ20, которые для повышения жаростойкости легируют небольшими добавками хрома и никеля. Для термически нагруженных коллекторов применяют ковкий чугун, чугун с шаровидным графитом, а иногда - аустенитный чугун с шаровидным графитом, имеющим высокую термостойкость и стойкость против окисления[5].

В станкостроении серый чугун применяют для широкой номенклатуры литых деталей с массой от 0,1 кг до 100 тонн с толщиной стенок от 4 до 200 мм, работающих в самых разнообразных условиях. Классификация станкостроительных литых деталей из серого чугуна с учетом этого разнообразия конструкций и условий работы осуществляется в соответствии с ОСТ 2 МТ 21-2-83. При выборе марки чугуна конструктор в зависимости от класса, группы детали и приведенной толщины стенки отливки определяет необходимый минимальный уровень твердости и микроструктуры.

С учетом специфики большинства станкостроительных деталей, работающих преимущественно на жесткость, а не на прочность, предпочтение отдают чугунам, обладающим повышенной твердостью и пониженной пластичностью. Такие чугуны по химическому составу отличаются повышенным (против рекомендаций ГОСТ 1412-85) содержанием кремния и марганца при пониженном содержании углерода. Если невозможно получить необходимый уровень твердости чугуна, в направляющих применяют легирование, формовку с холодильниками и др. Отливки из серого чугуна весьма широко и успешно используются для определенной номенклатуры деталей сменного металлургического оборудования: сорто и листопрокатные валки, всевозможные изложницы для разливки слитков, шлаковые чаши и т.п.


2.2 Ковковый чугун


Ковкий чугун производится из отливок белой разновидности изделий. В них углерод полностью связан железом и представлен карбидом железа (цементитом Fe3C.)

Свойства ковких чугунов

Технические характеристики и свойства ковкого чугуна определяются содержанием углерода в виде графита, а также кремния. Для перлитного вида — еще хрома и марганца. Структурное различие также отражается на свойствах изделий. Например, ферритный вид отливок имеет твердость меньше, чем перлитный, но зато он отличается большей пластичностью. Хлопьевидные графитные включения придают изделиям высокую прочность при достаточно хорошей пластичности. Они способны поддаваться пластической деформации при температуре внутри помещений. Отсюда пошло их название «ковкие». Оно условно и не означает, что изделия из такого чугуна можно получать путем ковки. Для их изготовления применяют способ отливки деталей (рисунок 5).


Рисунок 5 – Хлопьевидные графитные включения
Одним из существенных преимуществ ковких заготовок является постоянство их свойств по всему поперечному сечению, а также отсутствие внутренних напряжений[4]. Физические и механические характеристики таких отливок находятся между подобными свойствами серых чугунов и стали.

Они обладают:

-хорошей текучестью в жидком виде;

-свойством поглощения вибраций при периодически повторяющихся нагрузках;

-хорошей износостойкостью;

-стойкостью к коррозии, поэтому на них не действует влага, химические реактивы, в том числе топочный газ. ;

-высокой плотностью, например, заготовка, имеющая толщину 7-8 мм, способна выдержать давление при гидравлических испытаниях в пределах 40 атмосфер.

Это дает возможность использовать отливки для производства различных изделий в газовой и водопроводной сфере. При низких температурах под действием динамических нагрузок материал может стать хрупким.

Маркировка чугуна

Изделия из ковкого чугуна имеют маркировку КЧ и последующие цифры. Первая пара цифр — это средний показатель временного сопротивление разрыву (предела прочности), уменьшенный на порядок, а вторая — процентный показатель относительного удлинения. Например, изделие марки КЧ 30-6 имеет временное сопротивление на разрыв σв =294 Н/мм2, а относительное удлинение — δ=6%. Согласно ГОСТ 1215–79 определено 11 видов ковкого чугуна. В таблице 1 отражены механические характеристики разных марок изделия.

Таблица 1

Чугун

НВ

σв, Н/мм2

δ, %

Ферритные чугуны

КЧ 30-6

КЧ 33-8

КЧ 35-10

КЧ 37-12

100-163

100-163

100-163

100-163

294

323

343

362

6

8

10

12


Продолжение таблицы 1

Перлитовые чугуны

КЧ 45-7

КЧ 55-5

КЧ 56-4

КЧ 60-3

КЧ 65-3

КЧ 75-2

КЧ 80-1,5

150-207

170-230

192-241

200-269

212-269

241-285

270-320

441

490

539

588

637

689

784


7

5

4

3

2

1

1,5


Области применения

Ковкий чугун предназначен для использования:

- в машиностроительной отрасли для изготовления конструкций станков;

-для изготовления корпусов и комплектующих автомобилей;

-при производстве железнодорожных вагонов; в изготовлении оборудования для сельского хозяйства.

Несмотря на то, что перлитный чугун по своим характеристикам лучше, применяются в основном ферритные отливки, т. к. их производство обходится дешевле.

Перлитный вид отливок применяют в производстве деталей, испытывающих повышенные нагрузки. Например, из них производят автомобильные рессоры, комплектующие дизельных и других двигателей и т.д.

При наличии большого количества технологических преимуществ, ковкий чугун в основном применяют для изготовления литья с относительно тонкой стенкой в интервале от 3 мм до 40 мм.

Ковкий чугун отличается от серого и высокопрочного формой графита, который имеет компактную, но хлопьевидную форму. Такую форму графит приобретает только при разложении цементита при температурах выше АС1. Поэтому основной особенностью технологии получения отливок из ковкого чугуна является необходимость изготовления сначала их из белого чугуна без включений пластинчатого графита[5]. Для получения чугуна с хлопьевидным графитом и без структурно свободного цементита отливки подвергают отжигу. В зависимости от химического состава чугуна и режима отжига можно получить ферритную, перлитную или перлитно-ферритиую металлическую основу.

Наличие пластинчатого графита в структуре ковкого чугуна не допускается, поэтому увеличение толщины стенок и массы отливки затрудняет получение чисто белого чугуна, поэтому область использования ковкого чугуна ограничивается тонкостенными (до 50 мм) отливками массой в несколько десятков килограммов.

Различают два вида ковкого чугуна: черносердечный (с темным бархатистым изломом) и белосердечный (с блестящим светлым изломом). Целью отжига чугуна на черносердечный является разложение структурно свободных карбидов, при этом обезуглероживается только поверхностный слой толщиной до 0,5 мм. Белосердечный ковкий чугун имеет полностью обезуглероженный поверхностный слой и частично обеуглероженные внутренние слои.

Ферритный ковкий чугун обладает высокой пластичностью, сопротивлением ударным нагрузкам и однородностью механических свойств по сечению отливок[6]. Второй особенностью ферритного ковкого чугуна является возможность одновременного повышения прочности и пластичности, тогда как в других железоуглеродистых сплавах повышение прочности всегда сопровождается снижением пластичности.

Перлитный ковкий чугун обладает высокой прочностью и средней пластичностью, отличается хорошими антифрикционными свойствами и высокой износостойкостью. Эти свойства могут быть существенно повышены при дополнительном микролегировании чугуна.

По уровню механических свойств sв, d и ан (ударная вязкость) ковкий чугун близок к чугуну с шаровидным графитом, а по хладноломкости он его превосходит. Это объясняется низким содержанием кремния в чугуне КЧ (0,9 - 1,6 %) в сравнении с 2,0 - 3,0 мас. У ЧШГ. При содержании кремния в чугуне свыше 2,0 % он, ликвируя на границу эвтектических зерен, охрупчивает их и снижает ударную вязкость при низких температурах.

Механические свойства КЧ определяют на литых образцах диаметром 16 мм, в зависимости от толщины стенки отливок допускается применение образцов диаметром 8 и 12 мм. Расчетная длина для определения относительного удлинения, как правило, трехкратная.

Обрабатываемость резанием КЧ, особенно ферритного, лучше, чем ЧШГ или стали с одинаковым содержанием связанного углерода отжига, который облегчает излом стружки и служит смазкой режущей кромки инструмента[7].

Так, например, если принять обрабатываемость резанием автоматной стали за 100 %, то обрабатываемость ферритного КЧ составляет 100 - 120 %, перлитного с твердостью НВ 190 - 240 – 70 - 90 %.

Обезуглероженный КЧ является единственным конструкционным чугуном, который хорошо сваривается и может быть использован для получения сварно-литых конструкций.

Ковкий чугун хорошо поддается запрессовке, расчеканке и легко заполняет зазоры. Отливки из ферритного КЧ можно подвергать холодной правке, из перлитного – в горячем состоянии.

Литейные свойства КЧ.

Ковкий чугун имеет пониженные литейные свойства: жидкотекучесть ниже, чем у СЧ и ЧШГ, но выше, чем у стали, и возрастает с повышением содержания углерода, кремния и фосфора. Соответственно толщину стенки отливок из КЧ назначают не менее 6 мм. Ограничение по максимальной толщине (не более 60 мм) связано с возможностью появления в литом состоянии недопустимых пластинчатого и точечного междендритного графита.

Объем усадочных раковин при затвердевании белого чугуна составляет 4,0 - 6,5 % и зависит от податливости литейной формы. Поэтому для получения плотных отливок из КЧ при разработке конструкции отливок предусматривают направленность затвердевания и хорошее питание прибылями.

Литейная усадка отливок из ферритного КЧ при содержании углерода 2,5 - 2,9 мас. % и толщине стенки до 20 мм составляет около 0,5 %, а при большей толщине усадка снижается до 0 %. Литейная усадка перлитного КЧ на 0,5 % больше усадки ферритного.

Значительные величины доперлитной усадки белого чугуна и модуля упругости в сочетании с хрупкостью создают литейные напряжения и склонность к образованию горячих и холодных трещин, что учитывают при конструировании отливок и разработке технологии литейной формы[7]. Это ограничивает получение сложных по конструкции отливок.


Заключение


В зависимости от назначения различают износостойкие, антифрикционные, жаропрочные и коррозионно-стойкие легированные чугуны.

Химический состав, механические свойства при нормальных температурах и рекомендуемые виды термической обработки легированных чугунов регламентируются ГОСТ 7769-82. В обозначении марок легированного чугуна буквы и цифры, соответствующие содержанию легирующих элементов, такие же, как и в марках стали.

Износостойкие чугуны, легированные никелем (до 5%) и хромом (0,8%), используются для изготовления деталей, работающих в абразивных средах. Чугуны (до 0,6% Cr и 2,5% Ni) с добавками титана, меди, ванадия, молибдена обладают повышенной износостойкостью в условиях трения без смазки. Их используют для изготовления автомобильных тормозных барабанов, дисков сцепления, гильз цилиндров и т. д.

Чугуны из жаропрочных сплавов ЧХ 2, ЧХ 3 используются для изготовления деталей контактных устройств химического оборудования, турбокомпрессоров, работающих при температурах 600 ° С (СН 2) и 700 ° С (СН 3).

Чугуны жаропрочные легированные ЧНМШ, ЧНИГ7Х2Ш с шаровидным графитом работоспособны при температурах 500-600 ° С и используются для изготовления деталей дизельных двигателей, компрессоров и др.

Коррозионно-стойкие легированные чугуны марок ЧХ 1, ЧНХТ, ЧНХМД, ЧН2Х (низколегированные) обладают повышенной коррозионной стойкостью в газовых, воздушных и щелочных средах. Их используют для изготовления деталей узлов трения, работающих при повышенных температурах (поршневых колец, блоков цилиндров и головок двигателей внутреннего сгорания, деталей дизелей, компрессоров и др.).
Антифрикционные чугуны используются в качестве подшипниковых сплавов, поскольку они представляют собой группу специальных сплавов, структура которых удовлетворяет правилу Шарпи (включения твердой фазы в мягкое основание), способных работать в условиях трения в качестве подшипников скольжения.

Хром, медь, никель, титан используются для легирования антифрикционных чугунов.

В ГОСТ 1585-85 включены шесть марок антифрикционного серого чугуна (АЧС-1 - АЧС-6) с пластинчатым графитом, две марки высокопрочного (АЧВ-1, АЧВ-2) и две марки ковкого (АЧК-1, АЧК-2) чугуны ... Настоящий стандарт регламентирует химический состав, структуру, режимы работы, а также содержит рекомендации по применению антифрикционных чугунов.

Различают перлитные и перлитно-ферритные антифрикционные чугуны. Применяются антифрикционные перлитные чугуны (АЧС-1, АЧС-2) и перлитно-ферритные чугуны (АЧС-3) при давлении в зоне контакта пар трения до 50 МПа. Чугуны с шаровидным графитом АЧВ-1 (перлит) и АЧВ-2 (перлитно-ферритный) используются при повышенных нагрузках (до 120 МПа).


Список использованной литературы


1. Конструкционные материалы Арзамасов Б.Н. , 2010г.

2.Материаловедение Арзамасов Б.Н. , 2016г.

3. Справочник по конструкционным материалам Арзамасов Б.Н. , 2005г.

4. Основы металлографии и пластической деформации стали Бельченко Г.И., Губенко С.И., 2017г.

5. Конструкционные материалы Болтон У., 2004

6. Металловедение Гуляев А.П., 2006

7. Материаловедение Ибрагимов Х.М., Ушаков В.Г., Филатов В.И. , 2007г.

8. Материаловедение и технология конструкционных материалов Колесов С.Н. , 2007г.


написать администратору сайта