геосфера. ответы экз энергетика геосферы. Дисцеплина Энергетика геосферы. Экзаменационный билет 1
Скачать 1.44 Mb.
|
Экзаменационный билет № 21 Суточный график электрических нагрузок. Основные составляющие. Для анализа режимов электропотребления используются следующие виды графиков нагрузки: суточные, недельные, годичные, многолетние. Наиболее широко используются среднесуточные графики, при построении которых нагрузка каждого часа определяется как средняя величина по графикам за разные сутки. Так получают характерные (стандартные) графики для всех дней недели, для разных месяцев года. Совокупность суточных графиков нагрузки характерных дней недели: после праздничного (а), нормального рабочего (б), предпраздничного (в) и праздничного (г) Величина нагрузки непрерывно подвержена изменениям во времени и достигает минимальной (Рмин), средней (Рср) и максимальной величин (Рмакс). или ; где - нагрузка i-го часа, - потребление электроэнергии за сутки. Для суточных графиков активной и реактивной нагрузок характерны следующие величины: максимум активной (реактивной) нагрузки за сутки P'м (Q'м) кВт (квар), максимум активной нагрузки в наиболее загруженной смене Pм кВт, расход активной (реактивной) энергии за сутки Wcут (Vcут), кВт-ч (квар-ч), расход активной (реактивной) энергии за наиболее загруженную смену Wcм (Vcм), кВт-ч (квар-ч). Используя эти характерные величины и зная общую номинальную мощность всех рабочих электроприемников (Ри, кВт), можно определить следующие характерные для суточных графиков показатели: Cреднюю активную нагрузку за сутки (кВт): Рсут = Wсут/24, Средниюю активную нагрузку за наиболее загруженную смену (кВт): Рсм = Wcм/8, Коэффициент использования номинальной мощности Рн за наиболее загруженную смену: Ки = Рсм/Рн, Коэффициент мощности в период максимума Cредневзвешенный коэффициент мощности за наиболее загруженную смену Коэффициент заполнения суточного графика активной и реактивной нагрузки: Кн.а = Wсут /P'м24, Кн.р = Vсут /Q'м24 Коэффициент максимума активной нагрузки за наиболее загруженную смену: Км = Рм/Рсм 2. Прохождение солнечной радиации через атмосферу. Эффекты поглощения и отражения. Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозольными примесями к воздуху и переходит в особую форму рассеянной радиации. Частично же она поглощается молекулами атмосферных газов и примесями к воздуху и переходит в теплоту, идет на нагревание атмосферы. Нерассеянная и непоглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Она частично отражается от земной поверхности, а в большей степени поглощается ею и нагревает ее. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство. В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, изменена в сравнении с тем, что было на границе атмосферы. Интенсивность радиации уменьшается, а спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному. В атмосфере поглощается сравнительно небольшое количество солнечной радиации, при этом главным образом в инфракрасной части спектра. Это поглощение - избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени. Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, и потому поглощение азотом практически не отражается на интенсивности солнечной радиации. В большей степени, но все же очень мало поглощает солнечную радиацию кислород - в двух узких участках видимой части спектра и в ультрафиолетовой его части. Более сильным поглотителем солнечной радиации является озон. Его содержание в воздухе, даже в стратосфере, очень мало; тем не менее он настолько сильно поглощает ультрафиолетовую радиацию, что из солнечной постоянной теряется несколько процентов. В результате поглощения в верхних слоях атмосферы в солнечном спектре у земной поверхности не наблюдаются волны короче 0,29 мк. Сильно поглощает радиацию в инфракрасной области спектра углекислый газ; но его содержание в атмосфере ничтожно, и поэтому поглощение им в общем незначительно. Основным же поглотителем радиации в атмосфере является водяной пар, сосредоточивающийся в тропосфере и, особенно в нижней ее части. Из общего состава солнечной радиации водяной пар поглощает значительную долю в инфракрасной области спектра. Хорошо поглощают солнечную радиацию также атмосферные аэрозоли, т. е. облака и твердые частички, взвешенные в атмосфере. В целом в атмосфере поглощается 15-20% радиации, приходящей от Солнца к Земле. В каждом отдельном месте поглощение меняется с течением времени в зависимости как от переменного содержания в воздухе поглощающих субстанций, главным образом водяного пара, облаков и пыли, так и от высоты солнца над горизонтом, т. е. от толщины слоя воздуха, проходимого лучами на пути сквозь атмосферу. Кроме поглощения, прямая солнечная радиация на пути сквозь атмосферу ослабляется еще путем рассеяния, причем ослабляется более значительно. При этом рассеяние радиации тем больше, чем больше содержит воздух аэрозольных примесей. Всю солнечную радиацию, приходящую к земной поверхности, прямую и рассеянную вместе, называют суммарной радиацией. Под интенсивностью суммарной радиации будем понимать приток ее энергии за одну минуту на один квадратный сантиметр горизонтальной поверхности, помещенной под открытым небом и незатененной от прямых солнечных лучей. Таким образом, интенсивность суммарной радиации равна Is = I sinh+i где I - интенсивность прямой радиации, i - интенсивность рассеянной радиации, h - высота солнца. При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные. По той же причине в первую половину года он больше, чем во вторую. Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем, тонком слое почвы или воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах. Итак, из общего потока суммарной радиации I sinh+i отражается от земной поверхности часть его (I sinh + i) А, где А - альбедо поверхности. Остальная часть суммарной радиации (I sinh + i)*(1-А) поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией. |