Главная страница

геосфера. ответы экз энергетика геосферы. Дисцеплина Энергетика геосферы. Экзаменационный билет 1


Скачать 1.44 Mb.
НазваниеДисцеплина Энергетика геосферы. Экзаменационный билет 1
Анкоргеосфера
Дата17.11.2022
Размер1.44 Mb.
Формат файлаdocx
Имя файлаответы экз энергетика геосферы.docx
ТипДокументы
#793618
страница9 из 18
1   ...   5   6   7   8   9   10   11   12   ...   18

Экзаменационный билет № 10





  1. Схема преобразования энергии солнца в энергию биомассы. Эффективность преобразования.


Следует различать три существующих пути использования солнечной энергии:
1) преобразование солнечной энергии в электрическую;

2) получение тепловой энергии;

3) производство биомассы, концентрирование солнечной энергии автотрофными организмами и последующее использование их химической энергии.
Производство биомассы автотропными организмами. Это одно из важнейших направлений использования солнечной энергии связано с живыми (в первую очередь растительными) организмами. Автотрофные организмы ежегодно ассимилируют в результате процесса фотосинтеза около 200 млрд тонн углерода, превращая его в органические соединения. Общее энергосодержание образующейся при этом биомассы оценивается в 3 • 1021 Дж. Эт,а величина примерно в 10 раз превышает ежегодное мировое потребление энергии и в 200 раз больше энергосодержания ежегодно потребляемой человечеством пищи. Эффективность фотосинтеза с точки зрения трансформации солнечной энергии является крайне низкой, в среднем 0,1% от теоретической величины, равной 15%. Однако имеются растения, которые используют 1 3% солнечной энергии (некоторые растения на севере). Таким образом, имеются громадные возможности для селекционеров; в перспективе это огромный резерв пищи. Общее количество энергии солнечного излучения, получаемое поверхностью Земли за год, более чем в 20000 раз превышает современный уровень мирового производства энергии.
Доля растительной биомассы в мировом потреблении энергии пока сравнительно невелика и составляет примерно 8% от общего количества топлива, расходуемого в мире. Однако для развивающихся стран биомасса растений, т. е. дрова и сжигаемые отходы сельского и лесного хозяйства, чрезвычайно важны и в настоящее время являются основными источниками получения энергии. В развивающихся странах на долю биологических источников энергии (в основном это дрова) приходится 68% получаемой энергии, в странах Дальневосточного региона (за исключением Японии) 50%. В странах Европейского экономического сообщества растительная биомасса служит источником 5% получаемой энергии, что эквивалентно, однако, расходу примерно 500 млн тонн нефти в год. В США доля энергии, получаемой из топлива растительного происхождения, составляет более 3% от общего баланса производства энергии и неуклонно увеличивается.
Возросший интерес к растительным источникам топлива в развитых странах связан не только с удорожанием нефти и продуктов ее переработки, но и с ростом коэффициента полезного использования энергии в дровяных печах (США). Совершенствование конструкций печей позволило увеличить КПД их использования до 30-80%. Однако при этом резко возросла их стоимость, поэтому в развивающихся странах до настоящего времени пользуются в основном печами старых образцов, имеющих КПД б 8%.
Сжигание растительного топлива в бытовых печах далеко не единственный способ переработки биомассы, синтезируемой или образующейся в результате жизнедеятельности живых организмов (табл. 15.1). Перспективы использования тех или иных способов переработки биомассы по-разному оцениваются в различных странах и определяются климатическими условиями и доступностью других источников энергии. Одним из важнейших среди вспомогательных источников энергии справедливо считают отходы сельскохозяйственного производства, в том числе жидкие и твердые отходы животноводства. Сосредоточенная в них химическая энергия это тоже результат трансформации солнечной энергии.
Наиболее перспективный метод переработки таких отходов связан с получением биогаза смеси горючего газа метана (60 70%) и негорючего углекислого газа (30 -35%). В нем обычно бывает немного примесей: сероводород, водород, кислород, азот. Образуется биогаз в результате анаэробного разложения органических соединений, поэтому сырьем для его получения могут быть не только отходы животноводства, но и осадок сточных вод, мусор и некоторые другие органические отходы.
При анаэробном разложении таких отходов, в зависимости от химического состава сырья, выделяется от 5 до 15 м3 биогаза на 1 кг перерабатываемой органики. Обычно процесс идет не до конца, и примерно половина органических веществ не разлагается. Но этот неразложив- шийся остаток является прекрасным удобрением. Поскольку процесс анаэробного разложения протекает при температуре 50-55 °С в течение нескольких дней, значительная доля болезнетворных микроорганизмов и яиц гельминтов гибнет, поэтому образующийся остаток обеззараживается и происходит его дезодорация. В состав этого остатка входят азот, фосфор, калий и другие микроэлементы. Использование такого удобрения в сельском хозяйстве замыкает кругооборот веществ. Вещества, извлеченные из почвы растениями, вновь возвращаются в почвенный слой.
Полученный в результате анаэробного разложения биогаз имеет теплотворную способность около 5000 ккал/м3. Его можно сжигать для получения электроэнергии, отопления домов, использовать в качестве горючего для автомобилей и тракторов. Работы по получению биогаза при переработке сельскохозяйственных отходов широко ведутся в различных странах мира.
Таким образом, при производстве биогаза можно не только избавиться от неприятных отходов животноводства, но и получить энергию и ценное удобрение.
Биомасса, если иметь в виду древесину, Солому, является одним из самых древних возобновляемых энергоресурсов, используемых человеком. В биомассе - зеленой массе растений, создаваемой в процессе фотосинтеза, - солнечная энергия запасается в виде химической энергии, которая может быть высвобождена различными путями. Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно 3-1022 Дж.

Эта цифра соответствует известным запасам энергии полезных ископаемых. Леса составляют 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - 8%. В целом на Земле при помощи фотосинтеза ежегодно производится 173 млрд.т сухого вещества, что более чем в 20 раз повышает используемую в мире энергию и в 200 раз - энергию, содержащуюся в пище всех более 4 млрд, обитателей планеты. Запасенная в биомассе энергия органических соединений может быть использована непосредственно в виде пищевых продуктов человеком или животными или же для получения энергии в промышленных целях.

2.Потенциал нетрадиционных источников энергии в России.
Доля традиционной топливной энергетики в мировом энергобалансе будет непрерывно сокращаться, а на смену придет нетрадиционная — альтернативная энергетика, основанная на использовании возобновляемых источников энергии. И от того, с какими темпами это произойдет в конкретной стране, зависит не только ее экономическое благополучие, но и ее независимость, ее национальная безопасность.

Ситуация с возобновимыми источниками энергии в России, как и почти со всем у нас в стране, может быть названа уникальной. Запасы этих источников, поддающихся использованию уже на сегодняшнем техническом уровне, огромны. Вот одна из оценок: солнечной лучистой энергии — 2300млрдТУТ (тонн условного топлива); ветра — 26,7млрдТУТ, биомассы — 10млрдТУТ; тепла Земли — 40000млрдТУТ; малых рек — 360млрдТУТ; морей и океанов — 30млрдТУТ. Эти источники намного превышают современный уровень энергопотребления России (1,2млрдТУТ в год). Однако используются из всего этого немыслимого изобилия даже не сказать что крохи — микроскопические количества. Как и в мире в целом, в России наиболее развита среди возобновляемых видов энергетики ветроэнергетика. Еще в 1930-хгг. в нашей стране серийно выпускалось несколько видов ветроустановок мощностью 3-4кВт, однако в 1960-егг. их выпуск был прекращен. В последние годы СССР правительство вновь обратило внимание на эту область, однако не успело реализовать своих планов. Тем не менее, с 1980 по 2006гг. Россией наработан большой научно-технический задел (но отставание в вопросах практического использования возобновимых источников энергии у России серьезное). Сегодня общая мощность действующих, сооружаемых и планируемых к вводу в России ВЭУ и ВЭС составляет 200 МВт. Мощность отдельных ветроагрегатов, изготавливаемых российскими предприятиями, лежит в диапазоне от 0,04 до 1000,0 кВт [21]. В качестве примера приведем нескольких разработчиков и производителей ВЭУ и ВЭС. В Москве ООО «СКТБ «Искра» производит ветроэлектрические станции М-250 мощностью 250Вт. В Дубне Московской области предприятие Гос.МКБ «Радуга» производит легко устанавливаемые ВЭС в 750Вт, 1кВт и 8кВт; Санкт-Петербургский НИИ «Электроприбор» выпускает ВЭУ до 500 Вт.
В отношении ресурсов ветровой энергии в России наиболее перспективны такие районы, как Побережье Северного Ледовитого океана, Камчатка, Сахалин, Чукотка, Якутия, а также побережье Финского залива, Черного и Каспийского морей. Высокие среднегодовые скорости ветра, малая обеспеченность централизованными электросетями и обилие неиспользуемых в хозяйстве площадей делает эти местности практически идеальными для развития ветровой энергетики. Похожая ситуация с солнечной энергетикой. Солнечная энергия, поступающая за неделю на территорию нашей страны, превышает энергию всех российских ресурсов нефти, угля, газа и урана. Имеются интересные отечественные разработки в этой области, но нет никакой поддержки их со стороны государства и, следовательно, нет рынка фотоэнергетики. Однако объем выпуска солнечных батарей исчисляется мегаваттами. В 2006г. было произведено около 400 МВт. Имеется тенденция к некоторому росту. Впрочем, больший интерес к продукции различных научно-производственных объединений, выпускающих фотоэлементы, проявляют покупатели из-за рубежа, для россиян они все еще дороги; в частности, потому что сырье для производства кристаллических пленочных элементов приходится ввозить из-за рубежа (в советское время заводы по производству кремния находились в Киргизии и Украине) Наиболее благоприятные районы для использования солнечной энергии в России — это Северный Кавказ, Ставропольский и Краснодарский края, Астраханская область, Калмыкия, Тува, Бурятия, Читинская область, Дальний Восток.

Наибольшие достижения по использованию солнечной энергии отмечены в области создания систем теплоснабжения с применением плоских солнечных коллекторов. Первое место в России во внедрении таких систем занимает Краснодарский край, где за последние годы в соответствии с действующей краевой программой энергосбережения сооружено около сотни крупных солнечных систем горячего водоснабжения и множество мелких установок индивидуального пользования. Наибольшее развитие солнечные установки для обогрева помещений получили в Краснодарском крае и Республике Бурятия. В Бурятии солнечными коллекторами производительностью от 500 до 3000 литров горячей воды (90-100 градусов по Цельсию) в сутки оснащены различные промышленные и социальные объекты – больницы, школы, завод «Электромашина» и т.д., а также частные жилые здания. Сравнительно повышенное внимание уделяется развитию геотермальных электростанций, более, видимо, привычных нашим энергетическим распорядителям и достигающих больших мощностей, а потому лучше укладывающихся в привычную концепцию энергетического гигантизма. Специалисты считают, что запасы геотермальной энергии на Камчатке и Курильских островах могут обеспечить электростанции мощностью до 1000МВт. Тепло недр Земли способно не только выбрасывать в воздух фонтаны гейзеров, но и согревать жилища и вырабатывать электроэнергию. Большими геотермальными ресурсами обладают Камчатка, Чукотка, Курилы, Приморский край, Западная Сибирь, Северный Кавказ, Краснодарский и Ставропольский края, Калининградская область. Высокопотенциальное термальное тепло (пароводная смесь свыше 100 градусов по Цельсию) позволяет производить электроэнергию напрямую.

Обычно пароводяная термальная смесь извлекается из скважин, пробуренных на глубину 2-5 км. Каждая из скважин способна обеспечить электрическую мощность 4-8 МВт с площади геотермального месторождения около 1 км2. При этом по экологическим соображениям необходимо иметь и скважины для закачки в пласт отработанных геотермальных вод.

В настоящее время на Камчатке действуют 3 геотермальных электростанции: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Суммарная мощность этих геотермальных электростанций составляет более 70 МВт. Это позволяет на 25% обеспечить потребности региона в электроэнергии и ослабить зависимость от поставок дорогостоящего привозного мазута.
В Сахалинской области на о. Кунашир введены первый агрегат мощностью 1,8 МВт Менделеевской ГеоТЭС и геотермальная тепловая станция ГТС-700 мощностью 17 Гкал/ч. Большая часть низкопотенциальной геотермальной энергии применяется в виде тепла в жилищно-коммунальном и сельском хозяйствах. Так, на Кавказе общая площадь обогреваемых геотермальными водами теплиц составляет свыше 70 га. В Москве построен и успешно эксплуатируется экспериментальный многоэтажный дом, в котором горячая вода для бытовых нужд нагревается за счет низкопотенциального тепла Земли.

Наконец, следует также упомянуть малые гидроэлектростанции. С ними дело обстоит относительно благополучно в плане конструкторских разработок: оборудование для малых ГЭС выпускается или готово к выпуску на многих предприятиях энергомашиностроительной промышленности, с гидротурбинами различной конструкции — осевыми, радиально-осевыми, пропеллерными, диагональными, ковшовыми. При этом стоимость оборудования, изготовленного на отечественных предприятиях, остается значительно ниже мирового уровня цен. На Кубани ведется строительство двух малых ГЭС (МГЭС) на р. Бешенка в районе п.Красная Поляна г.Сочи и сбросе циркуляционной системы технического водоснабжения Краснодарской ТЭЦ. Запланировано строительство МГЭС на сбросе Краснодарского водохранилища мощностью 50 МВт. Начата работа по восстановлению системы малых ГЭС в Ленинградской области. В 1970-е гг. там, в результате проведения кампании по укрупнению электроснабжения области, прекратили работу более 40 таких станций. Плоды недальновидной гигантомании приходится исправлять сейчас, когда необходимость в малых источниках энергии стала очевидной.


1   ...   5   6   7   8   9   10   11   12   ...   18


написать администратору сайта