Главная страница

геосфера. ответы экз энергетика геосферы. Дисцеплина Энергетика геосферы. Экзаменационный билет 1


Скачать 1.44 Mb.
НазваниеДисцеплина Энергетика геосферы. Экзаменационный билет 1
Анкоргеосфера
Дата17.11.2022
Размер1.44 Mb.
Формат файлаdocx
Имя файлаответы экз энергетика геосферы.docx
ТипДокументы
#793618
страница10 из 18
1   ...   6   7   8   9   10   11   12   13   ...   18

Экзаменационный билет № 11





  1. Потенциал нетрадиционных источников энергии в России.


Доля традиционной топливной энергетики в мировом энергобалансе будет непрерывно сокращаться, а на смену придет нетрадиционная — альтернативная энергетика, основанная на использовании возобновляемых источников энергии. И от того, с какими темпами это произойдет в конкретной стране, зависит не только ее экономическое благополучие, но и ее независимость, ее национальная безопасность.

Ситуация с возобновимыми источниками энергии в России, как и почти со всем у нас в стране, может быть названа уникальной. Запасы этих источников, поддающихся использованию уже на сегодняшнем техническом уровне, огромны. Вот одна из оценок: солнечной лучистой энергии — 2300млрдТУТ (тонн условного топлива); ветра — 26,7млрдТУТ, биомассы — 10млрдТУТ; тепла Земли — 40000млрдТУТ; малых рек — 360млрдТУТ; морей и океанов — 30млрдТУТ. Эти источники намного превышают современный уровень энергопотребления России (1,2млрдТУТ в год). Однако используются из всего этого немыслимого изобилия даже не сказать что крохи — микроскопические количества. Как и в мире в целом, в России наиболее развита среди возобновляемых видов энергетики ветроэнергетика. Еще в 1930-хгг. в нашей стране серийно выпускалось несколько видов ветроустановок мощностью 3-4кВт, однако в 1960-егг. их выпуск был прекращен. В последние годы СССР правительство вновь обратило внимание на эту область, однако не успело реализовать своих планов. Тем не менее, с 1980 по 2006гг. Россией наработан большой научно-технический задел (но отставание в вопросах практического использования возобновимых источников энергии у России серьезное). Сегодня общая мощность действующих, сооружаемых и планируемых к вводу в России ВЭУ и ВЭС составляет 200 МВт. Мощность отдельных ветроагрегатов, изготавливаемых российскими предприятиями, лежит в диапазоне от 0,04 до 1000,0 кВт [21]. В качестве примера приведем нескольких разработчиков и производителей ВЭУ и ВЭС. В Москве ООО «СКТБ «Искра» производит ветроэлектрические станции М-250 мощностью 250Вт. В Дубне Московской области предприятие Гос.МКБ «Радуга» производит легко устанавливаемые ВЭС в 750Вт, 1кВт и 8кВт; Санкт-Петербургский НИИ «Электроприбор» выпускает ВЭУ до 500 Вт.
В отношении ресурсов ветровой энергии в России наиболее перспективны такие районы, как Побережье Северного Ледовитого океана, Камчатка, Сахалин, Чукотка, Якутия, а также побережье Финского залива, Черного и Каспийского морей. Высокие среднегодовые скорости ветра, малая обеспеченность централизованными электросетями и обилие неиспользуемых в хозяйстве площадей делает эти местности практически идеальными для развития ветровой энергетики. Похожая ситуация с солнечной энергетикой. Солнечная энергия, поступающая за неделю на территорию нашей страны, превышает энергию всех российских ресурсов нефти, угля, газа и урана. Имеются интересные отечественные разработки в этой области, но нет никакой поддержки их со стороны государства и, следовательно, нет рынка фотоэнергетики. Однако объем выпуска солнечных батарей исчисляется мегаваттами. В 2006г. было произведено около 400 МВт. Имеется тенденция к некоторому росту. Впрочем, больший интерес к продукции различных научно-производственных объединений, выпускающих фотоэлементы, проявляют покупатели из-за рубежа, для россиян они все еще дороги; в частности, потому что сырье для производства кристаллических пленочных элементов приходится ввозить из-за рубежа (в советское время заводы по производству кремния находились в Киргизии и Украине) Наиболее благоприятные районы для использования солнечной энергии в России — это Северный Кавказ, Ставропольский и Краснодарский края, Астраханская область, Калмыкия, Тува, Бурятия, Читинская область, Дальний Восток.

Наибольшие достижения по использованию солнечной энергии отмечены в области создания систем теплоснабжения с применением плоских солнечных коллекторов. Первое место в России во внедрении таких систем занимает Краснодарский край, где за последние годы в соответствии с действующей краевой программой энергосбережения сооружено около сотни крупных солнечных систем горячего водоснабжения и множество мелких установок индивидуального пользования. Наибольшее развитие солнечные установки для обогрева помещений получили в Краснодарском крае и Республике Бурятия. В Бурятии солнечными коллекторами производительностью от 500 до 3000 литров горячей воды (90-100 градусов по Цельсию) в сутки оснащены различные промышленные и социальные объекты – больницы, школы, завод «Электромашина» и т.д., а также частные жилые здания. Сравнительно повышенное внимание уделяется развитию геотермальных электростанций, более, видимо, привычных нашим энергетическим распорядителям и достигающих больших мощностей, а потому лучше укладывающихся в привычную концепцию энергетического гигантизма. Специалисты считают, что запасы геотермальной энергии на Камчатке и Курильских островах могут обеспечить электростанции мощностью до 1000МВт. Тепло недр Земли способно не только выбрасывать в воздух фонтаны гейзеров, но и согревать жилища и вырабатывать электроэнергию. Большими геотермальными ресурсами обладают Камчатка, Чукотка, Курилы, Приморский край, Западная Сибирь, Северный Кавказ, Краснодарский и Ставропольский края, Калининградская область. Высокопотенциальное термальное тепло (пароводная смесь свыше 100 градусов по Цельсию) позволяет производить электроэнергию напрямую.

Обычно пароводяная термальная смесь извлекается из скважин, пробуренных на глубину 2-5 км. Каждая из скважин способна обеспечить электрическую мощность 4-8 МВт с площади геотермального месторождения около 1 км2. При этом по экологическим соображениям необходимо иметь и скважины для закачки в пласт отработанных геотермальных вод.

В настоящее время на Камчатке действуют 3 геотермальных электростанции: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Суммарная мощность этих геотермальных электростанций составляет более 70 МВт. Это позволяет на 25% обеспечить потребности региона в электроэнергии и ослабить зависимость от поставок дорогостоящего привозного мазута.
В Сахалинской области на о. Кунашир введены первый агрегат мощностью 1,8 МВт Менделеевской ГеоТЭС и геотермальная тепловая станция ГТС-700 мощностью 17 Гкал/ч. Большая часть низкопотенциальной геотермальной энергии применяется в виде тепла в жилищно-коммунальном и сельском хозяйствах. Так, на Кавказе общая площадь обогреваемых геотермальными водами теплиц составляет свыше 70 га. В Москве построен и успешно эксплуатируется экспериментальный многоэтажный дом, в котором горячая вода для бытовых нужд нагревается за счет низкопотенциального тепла Земли.


Наконец, следует также упомянуть малые гидроэлектростанции. С ними дело обстоит относительно благополучно в плане конструкторских разработок: оборудование для малых ГЭС выпускается или готово к выпуску на многих предприятиях энергомашиностроительной промышленности, с гидротурбинами различной конструкции — осевыми, радиально-осевыми, пропеллерными, диагональными, ковшовыми. При этом стоимость оборудования, изготовленного на отечественных предприятиях, остается значительно ниже мирового уровня цен. На Кубани ведется строительство двух малых ГЭС (МГЭС) на р. Бешенка в районе п.Красная Поляна г.Сочи и сбросе циркуляционной системы технического водоснабжения Краснодарской ТЭЦ. Запланировано строительство МГЭС на сбросе Краснодарского водохранилища мощностью 50 МВт. Начата работа по восстановлению системы малых ГЭС в Ленинградской области. В 1970-е гг. там, в результате проведения кампании по укрупнению электроснабжения области, прекратили работу более 40 таких станций. Плоды недальновидной гигантомании приходится исправлять сейчас, когда необходимость в малых источниках энергии стала очевидной.


  1. Воздушная оболочка Земли. Схема и основные параметры атмосферы.


Атмосфера Земли — это газовая оболочка нашей планеты, простирающаяся до тысячи километров ввысь над поверхностью планеты. Она характеризуется высокой динамичностью, физической неоднородностью и уязвимостью к биологическим факторам. На протяжении миллиардов лет истории атмосферы Земли, именно живые существа сильнее всего изменяли ее состав. Масса атмосферы составляет 5,2×1018 килограмм. Хотя газовые оболочки распространяются на многие тысячи километров от Земли, ее атмосферой считаются лишь те, которые вращаются вокруг оси со скоростью, равной скорости вращения планеты. Таким образом, высота атмосферы Земли составляет около 1000 километров, плавно переходя в космическое пространство в верхнем слое, экзосфере (от др. греческого «внешний шар»).



Самый нижний и наиболее плотный слой атмосферы называется тропосферой. Читатель статьи сейчас находится именно в его «придонной» части — если, конечно, он не является одним из 500 тысяч человек, которые летят прямо сейчас в самолете. Верхний предел тропосферы зависит от широты (помните о центробежной силе вращения Земли, из-за которой планета шире на экваторе?) и колеблется от 7 километров на полюсах до 20 километров на экваторе. Также размеры тропосферы зависит от сезона — чем теплее воздух, тем выше поднимается верхний предел.

Структура атмосферы

Однако экзосфера — это не единственный особый слой нашей атмосферы. Их существует немало, и каждый из них обладает своими уникальными характеристиками.
Название «тропосфера» происходит от древнегреческого слова «tropos», которое переводится как «поворот, изменение». Это достаточно точно отображает свойства слоя атмосферы — он наиболее динамичный и продуктивный. Именно в тропосфере собираются облака и циркулирует вода, создаются циклоны и антициклоны и генерируются ветра — происходят все те процессы, которые мы называем «погода» и «климат». Кроме того, это самый массивный и плотный слой — на него приходится 80% массы атмосферы и почти все содержание воды в ней. Тут же обитает большая часть живых организмов.
Уже упомянутое воздушное дно, где атмосфера контактирует с литосферой, называется приземным пограничным слоем. Его роль в циркуляции атмосферы невероятно велика — отдача тепла и излучения от поверхности создает ветры и перепады давления, а горы и другие неровности рельефа направляют и разделяют их. Тут же происходит водообмен — за 8–12 дней вся вода, взятая из океанов и поверхности, возвращается обратно, превращая тропосферу в своеобразный водный фильтр.

Стратосфера

Слой атмосферы, располагающийся в диапазоне между 8 км высоты (на полюсе) и 50 км (на экваторе), называется стратосферой. Название происходит от др. греческого слова «stratos», которое значит «настил, слой». Это крайне разреженная зона атмосферы Земли, в которой почти нет водного пара. Давление воздуха в нижней части стратосферы в 10 раз меньше приповерхностного, а в верхней части — в 100 раз.
Озоновый слой

А еще на границе между стратосферой и мезоферой находится знаменитый озоновый слой. Он защищает поверхность Земли от воздействия ультрафиолетовых лучей, а заодно служит верхней границей распространения жизни на планете — выше него температура, давление и космическое излучение быстро положат конец даже самым стойким бактериям.
Откуда же взялся этот щит? Ответ невероятен — он был создан живыми организмами, точнее — кислородом, которые разнообразные бактерии, водоросли и растения выделяли с незапамятных времен. Поднимаясь высоко по атмосфере, кислород контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию. В итоге из обычного кислорода, которым мы дышим, O2, получается озон — O3.

Мезосфера

Мы уже упоминали, что над стратосферой — точнее, над стратопаузой, пограничной прослойкой стабильной температуры — находится мезосфера. Этот относительно небольшой слой располагается между 40–45 и 90 километров высоты и является самым холодным местом в нашей планете — в мезопаузе, верхнем слое мезосферы, воздух охлаждается до –143°C.
Мезосфера является наименее изученной частью атмосферы Земли. Экстремально малое давление газов, которое от тысячи до десяти тысяч раз ниже поверхностного, ограничивает движение воздушных шаров — их подъемная сила доходит до нуля, и они попросту зависают на месте. То же происходит с реактивными самолетами — аэродинамика крыла и корпуса самолета теряют свой смысл. Поэтому летать в мезосфере могут либо ракеты, либо самолеты с ракетными двигателями — ракетопланы. К таким относится ракетоплан X-15, который удерживает позицию самого быстрого самолета в мире: он достиг высоты в 108 километров и скорости 7200 км/ч — в 6,72 раза больше скорости звука.
Термосфера

Над мезосферой, на высоте 100 километров над уровнем моря, проходит линия Кармана — условная граница между Землей и космосом. Хотя там и присутствуют газы, которые вращаются вместе с Землей и технически входят в атмосферу, их количество выше линии Кармана незримо мало. Поэтому любой полет, который выходит за высоту 100 километров, уже считается космическим.
С линией Кармана совпадает нижняя граница самого протяженного слоя атмосферы — термосферы. Она поднимается до высоты 800 километров и отличается чрезвычайно высокой температурой — на высоте 400 километров она достигает максимума в 1800°C!.
До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере.
На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

1   ...   6   7   8   9   10   11   12   13   ...   18


написать администратору сайта