Главная страница
Навигация по странице:

  • УНИКАЛЬНЫЕ СВОЙСТВА ВОДЫ

  • Свободная и связанная влага в пищевых продуктах

  • Активность воды и стабильность пищевых продуктов

  • Роль льда в обеспечении стабильности пищевых продуктов

  • Методы определения влаги в пищевых продуктах

  • Определение свободной и связанной влаги

  • ВСЕМИРНЫЙ ДЕНЬ ВОДНЫХ РЕСУРСОВ

  • Вода в рационе питания. Дисциплина Физическая культура и спорт


    Скачать 39.5 Kb.
    НазваниеДисциплина Физическая культура и спорт
    Дата12.01.2022
    Размер39.5 Kb.
    Формат файлаdocx
    Имя файлаВода в рационе питания.docx
    ТипРеферат
    #328892

    Титульный лист

    ВОДА

    В РАЦИОНЕ

    ПИТАНИЯ

    Дисциплина: Физическая культура и спорт

    Выполнил: Пахомов Дмитрий Геннадьевич

    Содержание: 1.

    Введение 2.

    Вода в рационе питания. 3.

    Уникальные свойства воды. 4.

    Живая и мертвая вода 5.

    Свободная и связанная влага в пищевых продуктах 5.

    Активность воды и стабильность пищевых продуктов 8.

    Роль льда в обеспечении стабильности пищевых продуктов 10.

    Методы определения влаги в пищевых продуктах 11.

    Определение свободной и связанной влаги 12.

    Интересные факты 13.

    Всемирный день водных ресурсов 13.

    Заключение 14.

    Список литературы 16.

    1

    Введение

    Вода -  необыкновенный, уникальный минерал! Это единственный минерал, который бывает в твердом, жидком и газообразном состоянии.   Вода - один из лучших энергоинформационных носителей. 

    Вода — важная составляющая пищевых продуктов. Для жизни человека, вода, наряду с воздухом, занимает одно из важнейших мест в поддержании жизни и здоровья. Человек (как и любой живой организм) состоящий из воды более, чем на 70%,  прожить без неё может очень короткое время. Вода нужна всему живому- животным, птицам, растениям и даже микроорганизмам. Не будет воды- не будет жизни на Земле; в том числе и по причине отсутствия продуктов питания, т.к. растения без воды не вырастут и не выживут, сельскохозяйственным животным, птице вода также жизненно необходима, не говоря уже о том, что рыба живет только в воде. Таким образом,  человеку вода нужна не только сама по себе, но ещё и как средства для производства продуктов питания.

    Она присутствует и разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обусловливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимо­действию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад в текстуру пищи.

    Количество воды в пищевых продуктах влияет на их качество и сохраняемость. Скоропортящиеся продукты с повышенным содержанием влаги без консервирования длительное время не сохраняются. Вода, содержащаяся в продуктах, способствует ускорению в них химических, биохимических и других процессов. Продукты с малым содержанием воды лучше сохраняются.

    Многие виды пищевых продуктов содержат большое количество вла­ги, что отрицательно сказывается на их стабильности в процессе хране­ния. Поскольку вода непосредственно участвует в гидролитических про­цессах, ее удаление или связывание за счет увеличения содержания соли или сахара тормозит многие реакции и ингибирует рост микроорганиз­мов, таким образом удлиняя сроки хранения продуктов. Важно также от­метить, что удаление влаги путем высушивания или замораживания существенно влияет на химический состав и природные свойства.

    Целью данной работы является исследование свойств воды в рационе питания человека , особенностей поведения воды и льда в пищевых продуктах.

    Для достижения поставленной цели решаются следующие основные задачи:

    - свойства воды в рационе питания;

    -изучение различных форм связи воды в пищевых продуктов;

    -выяснение взаимосвязи активности воды пищевых продуктов с их физико-химическими, реологическими и технологическими свойствами, а также качественными изменениями при обработке и хранении.

    2

    Вода в рационе питания.

    Вода необходима для нормального функционирования организма, так как доставляет к клеткам  кислород и питательные вещества; позволяет перерабатывать пищу в энергию, выводит шлаки и отходы из нашего организма;  участвует в регулировании температуры тела.
    Вода способствует тому, чтобы пища, которую мы едим, быстро переваривалась и усваивалась организмом. Вода служит в качестве смазки для наших суставов, а также регулирует и поддерживает температуру нашего тела.
    Несмотря на то, что вода не имеет энергетической ценности (в ней отсутствуют белки, жиры и углеводы), она необходима для растворения витаминов, необходимых для нормальной жизнедеятельности человека, в том числе:
    C-  участвует в окислительно-восстановительных реакциях, функционировании иммунной системы, способствует усвоению железа. Дефицит приводит к рыхлости и кровоточивости десен, носовым кровотечениям вследствие повышенной проницаемости и ломкости кровеносных капилляров.
    B1 (тиамин)- в форме образующегося из него тиаминдифосфата входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем.
    Витамин B2 (рибофлавин)- в форме коферментов участвует в окислительно-восстановительных реакциях, способствует повышению восприимчивости цвета зрительным анализатором и темновой адаптации. Недостаточное потребление витамина B2 сопровождается нарушением состояния кожных покровов, слизистых оболочек, нарушением светового и сумеречного зрения.
    Витамин B6 (пиридоксин)- в форме своих коферментов участвует в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, участвует в поддержании иммунного ответа, участвует в процессах торможения и возбуждения в центральной нервной системе, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина B6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии.
    Ниацин в качестве кофермента участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно-кишечного тракта и нервной системы.
    B12 играет важную роль в метаболизме и превращениях аминокислот. Фолат и витамин B12 являются взаимосвязанными витаминами, участвуют в кроветворении. Недостаток витамина B12 приводит к развитию частичной или вторичной недостаточности фолатов, а также анемии, лейкопении, тромбоцитопении.

    3

    Фолаты- в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний.
    Пантотеновая кислота- участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых.
    Биотин- участвует в синтезе жиров, гликогена, метаболизме аминокислот. Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов.
    УНИКАЛЬНЫЕ СВОЙСТВА ВОДЫ

    Вода – самое привычное вещество на Земле. Она сопровождает каждое мгновение нашей жизни, но знаем ли мы тайну которую хранит в себе эта удивительная стихия? Откуда она пришла? Кто и зачем одарил его нашу планету – единственную во всей вселенной? Быть может, ответы на вопросы знает сама вода? Ведь сегодня ее на Земле столько же сколько было тогда, когда все начиналось, когда зарождался мир, обретая привычные очертания и ощущения. Но не один ученый не может объяснить, например, почему плотность воды при минусовой температуре увеличивается, а при плюсовой уменьшается. Любое вещество при охлаждении сжимается, а вода наоборот расширяется – это уникальное свойство стали использовать еще в далеком прошлом. Северные народы добывали камень для строительства, заливая воду перед заморозками в расщелины скал. На юге деревянные клинья вбивали в трещины породы и заливали их водой, разбухая, эти клинья разрывали камень. Гораздо позже ученые установили, что находясь в порах и капиллярах, вода способна создавать огромное давление. В зерне, например, в момент прорастания оно может достигать четырехсот атмосфер, вот почему росток с легкостью пробивает асфальт.

    Мартин Чаплин (профессор, заведующий лабораторией лондонского университета) говорит: «Вода – это маленькая молекула, которая имеет крайне специфические свойства и нельзя найти другие молекулы, которые бы имели такие же аномалии». Александр Солодилов (доктор наук; Россия) говорит, что если бы не было какой-то из них - не было бы самой жизни на планете.

    Любое из свойств воды уникально. До сих пор у науки нет ответа на вопросы: почему только вода единственное вещество на планете может находиться в трех агрегатных состояниях: твердом жидком и газообразном? Почему из всех жидкостей именно у воды самое большое поверхностное натяжение? Почему она является самым мощным растворителем на Земле? И каким образом она способна подниматься по стволам огромных деревьев, преодолевая давление в десятки атмосфер?

    4

    ЖИВАЯ И МЕРТВАЯ ВОДА

    Первые сведения о живой и мёртвой воде дошли до нас из народных сказок и былин: в них эта вода использовалась для омоложения, а иногда и оживления героев повествований, для придания им силы и бодрости. Много веков умы людей будоражили легенды о живой и мёртвой воде, где "мёртвая" заживляет раны, а "живая" воскрешает организм.  Не только обычные люди искали такую воду, в средневековье алхимики, а после современные учёные пытались создать чудодейственную формулу. Попытки научного обоснования свойств живой и мертвой воды впервые были предприняты в 1981 году, после чего ее стали широко пропагандировать для лечения различных недугов в домашних условиях. К сожалению, сейчас эта методика незаслуженно забыта. Живую и мертвую воду можно получить путем электролиза обычной воды, погрузив в нее два электрода (анод и катод) и пропуская через воду в течение 5-6 минут сильный электрический ток. Живая вода, образующаяся около катода, имеет резко щелочную реакцию, мертвая (около анода) - сильнокислую. Кроме того, большинство находящихся в воде болезнетворных бактерий погибает, и она становится практически стерильной.Живая вода обладает свойством ускорять рост клеток. Поэтому она незаменима в садоводстве для полива растений, в косметических, а иногда и в лечебных целях. Мертвая вода эффективно справляется с любыми микробами, это мягко действующий антисептик. Единственным недостатком электрохимического способа активации воды является сложность ее приготовления. Не очень удобно также и то, что полученная таким образом вода сохраняет свои свойства лишь в течение 6 часов.

    Свободная и связанная влага в пищевых продуктах

    Вода в пищевых продуктах играет, как уже отмечалось, важную роль, т. к. обусловливает консистенцию и структуру продукта, а ее взаимодей­ствие с присутствующими компонентами определяет устойчивость про­дукта при хранении. Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микроби­ологическим изменениям в продукте. В обеспечении его устойчивости при хранении важную роль играет соотношение свободной и связанной влаги. Связанная влага— это ассоциированная вода, прочно связанная с раз­личными компонентами — белками, липидами и углеводами за счет хи­мических и физических связей. Свободная влага— это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций. Рассмотрим некоторые примеры.

    При влажности зерна 15 — 20% связанная вода составляет 10 — 15%. При большей влажности появляется свободная влага, способствующая уси­лению биохимических процессов (например, прорастанию зерна).

    Плоды и овощи имеют влажность 75 — 95%. В основном, это свобод­ная вода, однако примерно 5% влаги удерживается клеточными коллоидами в прочно связанном

    5

    состоянии. Поэтому овощи и плоды легко вы­сушить до 10 — 12%, но сушка до более низкой влажности требует приме­нения специальных методов.

    Большая часть воды в продукте может быть превращена в лед при —5°С, а вся — при — 50°С и ниже. Однако определенная доля прочно свя­занной влаги не замерзает даже при температуре —60°С.

    «Связывание воды» и «гидратация» — определения, характеризующие способность воды к ассоциации с различной степенью прочности с гидрофильными веществами. Размер и сила связывания воды или гидрата­ции зависит от таких факторов, как природа неводного компонента, со­став соли, рН, температура.

    В ряде случаев термин «связанная вода» используется без уточнения его смысла, однако пред­лагается и достаточно много его определений. В соответствии с ними свя­занная влага:

    • характеризует равновесное влагосодержание образца при некоторой температуре и низкой относительной влажности;

    • не замерзает при низких температурах (—40°С и ниже);

    • не может служить растворителем для добавленных веществ;

    • дает полосу в спектрах протонного магнитного резонанса;

    • перемещается вместе с макромолекулами при определении скорости седиментации, вязкости, диффузии;

    • существует вблизи растворенного вещества и других неводных веществ и имеет свойства, значительно отличающиеся от свойств всей массы воды в системе.

    Указанные признаки дают достаточно полное качественное описание связанной воды. Однако ее количественная оценка по тем или иным при­знакам не всегда обеспечивает сходимость результатов. Поэтому боль­шинство исследователей склоняются к определению связанной влаги только по двум из перечисленных выше признаков. По этому определе­нию, связанная влага — это вода, которая существует вблизи растворен­ного вещества и других неводных компонентов, имеет уменьшенную мо­лекулярную подвижность и другие свойства, отличающиеся от свойств всей массы воды в той же системе, и не замерзает при — 40°С. Такое опре­деление объясняет физическую сущность связанной воды и обеспечива­ет возможность сравнительно точной ее количественной оценки, т.к. вода, незамерзающая при — 40°С, может быть измерена с удовлетворительным результатом (например, методом ПМР или калориметрически). При этом действительное содержание связанной влаги изменяется в зависимости от вида продукта.

    Причины связывания влаги в сложных системах различны. Наибо­лее прочно

    6

    связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассо­циированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою при­мыкает мультислойная вода (вода полимолекулярной адсорбции), обра­зующая несколько слоев за близлежащей водой. Хотя мультислой — это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, и потому ее свой­ства существенно отличаются от чистой воды. Таким образом, связан­ная влага состоит из «органической», близлежащей и почти всей водымультислоя.

    Кроме того, небольшие количества воды в некоторых клеточных сис­темах могут иметь уменьшенные подвижность и давление пара из-за на­хождения воды в капиллярах. Уменьшение давления пара и активности воды (aw) становится существенным, когда капилляры имеют диаметр меньше, чем 0,1µ м. Большинство же пищевых продуктов имеют капил­ляры диаметром от 10 до 100 μм, которые, по-видимому, не могут замет­но влиять на уменьшение aw в пищевых продуктах.

    В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества водых [3].

    Хотя структура этой воды в клетках и макромолекулярной матрице точно не установлена, ее поведение в пищевых системах и важность для качества пищи очевидна. Эта вода не выделяется из пищевого продукта даже при большом механическом усилии. С другой стороны, в техноло­гических процессах обработки она ведет себя почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таким образом, свойства этой воды, как свободной, не­сколько ограничены, но ее молекулы ведут себя подобно водным моле­кулам в разбавленных солевых растворах.

    Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых про­дуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса). Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.

    7

    Активность воды и стабильность пищевых продуктов

    Стабильность пищевых продук­тов и активность воды тесно связаны.

    В продуктах с низкой влажностью могут происходить окисление жи­ров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганиз­мов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

    Окисление липидов начинается при низкой aw. По мере ее увели­чения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение aw снова уменьшает скорость окисле­ния. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.

    Наблюдаемый максимум потемнения может объясняться наступле­нием равновесия в процессе диффузии, которая регулируется величиной вязкости, степенью растворения и массообменом. При низкой активно­сти воды медленная диффузия реагентов замедляет скорость реакции. По мере увеличения влагосодержания более свободная диффузия ускоряет реакцию до тех пор, пока в верхней точке диапазона влажности раство­рение реагентов снова не замедляет ее. Точно так же более высокая кон­центрация воды замедляет ход реакции на тех обратимых стадиях, на ко­торых образуется вода.

    Ферментативные реакции могут протекать при более высоком содер­жании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата. Учитывая это, легко понять, по­чему скорость ферментативных реакций зависит от aw.

    При aw, соответствующей влаге монослоя, нет свободной воды для переноса субстрата. Кроме того, в ряде ферментативных реакций вода сама играет роль субстрата.

    Для большинства бакте­рий предельное значения aw= 0,9, но, например, для St.aureus aw= 0,86. Этот штамм продуцирует целый ряд энтсротоксинов типа А, В, С, D, Е.

    8.

    Боль­шинство пищевых отравлений связаны с токсинами А и D. Дрожжи и плесени могут расти при более низких значениях активности воды.

    При хранении пищевых продуктов активность воды оказывает влия­ние на жизнеспособность микроорганизмов. Поэтому актив­ность воды в продукте имеет значение для предотвращения его микро­биологической порчи.

    В основном порчу продуктов с промежуточной влажностью вызыва­ют дрожжи и плесени, меньше — бактерии. Дрожжи вызывают порчу си­ропов, кондитерских изделий, джемов, сушеных фруктов; плесени — мяса, джемов, пирожных, печенья, сушеных фруктов. Эффективным средством для предупреждения микробиологической порчи и целого ряда химических реакций, снижающих качество пище­вых продуктов при хранении, является снижение активности воды в пи­щевых продуктах. Для снижения активности воды использу­ют такие технологические приемы, как сушка, вяление, добавление раз­личных веществ (сахар, соль и др.), замораживание. С целью достиже­ния той или иной активности воды в продукте можно применять такие технологические приемы, как:

    • адсорбция — продукт высушивают, а затем увлажняют до определенного уровня влажности;

    • сушка посредством осмоса — пищевые продукты погружают в раство­ры, активность воды в которых меньше активности воды пищевых про­дуктов.

    Часто для этого используют растворы Сахаров или соли. В этом случае имеет место два противотока: из раствора в продукт диффундирует растворенное вещество, а из продукта в раствор — вода. К сожалению, природа этих про­цессов сложна, и в литературе нет доста­точных данных по этому вопросу.

    Для достижения требуемой активно­сти воды добавляют различные ингредиенты в продукт, обработанный одним из указанных выше способов, и дают ему возможность прийти в равновесное со­стояние, т.к. один лишь процесс сушки часто не позволяет получить нужную кон-систенцию. Применяя увлажнители, можно увеличить влажность продукта, но снизить aw. Потенциальными увлажнителями для пищевых продуктов являются крахмал, молочная кислота, сахара, глицерин и др.

    9.

    Роль льда в обеспечении стабильности пищевых продуктов

    Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой температуры, чем от образования льда. Образование льда в клеточных структурах пищевых продуктов и гелях имеет два важных следствия:

    а) не­водные компоненты концентрируются в незамерзающей фазе (незамерзающая фаза существует в пищевых продуктах при всех температурах хранения);

    б) вся вода, превращаемая в лед, увеличивается на 9% в объеме.

    Во время замораживания вода переходит в кристаллы льда различ­ной, но достаточно высокой степени чистоты. Все неводные компонен­ты поэтому концентрируются в уменьшенном количестве незамерзшей воды. Благодаря этому эффекту, незамерзшая фаза существенно изменя­ет такие свойства, как рН, титруемая кислотность, ионная сила, вязкость, точка замерзания, поверхностное натяжение, окислительно-восстанови­тельный потенциал. Структура воды и взаимодействие «вода — растворен­ное вещество» также могут сильно изменяться.

    Эти изменения могут увеличить скорости реакций. Таким образом, замораживание имеет два противоположных влияния на скорость реакций: низкая температура как таковая будет ее уменьшать, а концентри­рование компонентов в незамерзшей воде — иногда увеличивать. Так, в ряде исследований показано увеличение при заморажива­нии скорости реакций неферментативного потемнения, имеющих место при различных реакциях.

    Фактор возможности увеличения скорости различных реакций в замороженных продуктах необходимо учитывать при их хранении, посколь­ку этот фактор будет влиять на качество продуктах.

    10.

    Многочисленными исследованиями показано, что существенное снижение скорости реакций (более чем в 2 раза) имеет место при хранении пищевых продуктов в условиях достаточно низкой темпера­туры (-18°С).

    При отрицательных температурах, достаточно близких к темпера­туре замерзания воды (0°С) имеет место увеличение доли несолюбилизованного белка. При температуре — 18°С инсолюбилизация белка уменьшается существенно, и это создает оптимальные условия для хра­нения продуктов.

    Методы определения влаги в пищевых продуктах

    Определение общего содержания влаги

    Высушивание до постоянной массы.Содержание влаги рассчитывают по разности массы образца до и после высушивания в сушильном шкафу при температуре 100— 105°С. Это — стандартный метод определения вла­ги в техно-химическом контроле пищевых продуктов. Поскольку в ос­нове метода лежит высушивание образца до постоянной массы, метод требует много времени для проведения анализа.

    Титрование по модифицированному методу Карла Фишера.Метод ос­нован на использовании реакции окисления-восстановления с участи­ем йода и диоксида серы, которая протекает в присутствии воды. Использование специально подобранных органических реагентов позво­ляет достигнуть полного извлечения воды из пищевого продукта, а ис­пользование в качестве органического основания имидазола способ­ствует практически полному протеканию реакции. Содержание влаги в продукте рассчитывается по количеству йода, затраченному на титро­вание. Метод отличается высокой точностью и стабильностью резуль­татов (в том числе при очень низком содержании влаги) и быстротой проведения анализа.


    11.

    Определение свободной и связанной влаги

    Дифференциальная сканирующая калориметрия.Если образец охладить до температуры меньше 0°С, то свободная влага замерзнет, связанная — нет. При нагревании замороженного образца в калориметре можно из­мерить тепло, потребляемое при таянии льда. Незамерзающая вода оп­ределяется как разница между общей и замерзающей водой.

    Термогравиметрический метод.Метод основан на определении скоро­сти высушивания. В контролируемых условиях граница между областью постоянной скорости высушивания и областью, где эта скорость снижа­ется, характеризует связанную влагу.10

    Диэлектрические измерения.Метод основан на том, что при 0°С зна­чения диэлектрической проницаемости воды и льда примерно равны. Но если часть влаги связана, то ее диэлектрические свойства должны силь­но отличаться от диэлектрических свойств объемной воды и льда.

    Измерение теплоемкости.Теплоемкость воды больше, чем теплоем­кость льда, т.к. с повышением температуры в воде происходит разрыв во­дородных связей. Это свойство используют для изучения подвижности молекул воды. Значение теплоемкости воды в зависимости от ее содержания в полимерах дает сведения о количестве связанной воды. Если при низких концентрациях вода специфически связана, то ее вклад в тепло­емкость мал. В области высоких значений влажности ее в основном опре­деляет свободная влага, вклад которой в теплоемкость примерно в 2 раза больше, чем льда.

    ЯМР.Метод заключается в изучении подвижности воды в неподвиж­ной матрице. При наличии свободной и связанной влаги получают две линии в спектре ЯМР вместо одной для объемной воды.


    12.
    ИНТЕРЕСНЫЕ ФАКТЫ

    • В среднем в организме растений и животных содержится более 50 % воды.

    • В составе мантии Земли воды содержится в 10-12 раз больше, чем в Мировом океане.

    • При средней глубине в 4 км Мировой океан покрывает около 71 % поверхности планеты и содержит 97,6 % известных мировых запасов свободной воды.

    • Если бы на Земле не было впадин и выпуклостей, вода покрыла бы всю Землю, и ее толщина была бы 3 км.

    • Если бы все ледники растаяли, то уровень воды на Земле поднялся бы на 64 м и около 1/8 поверхности суши было бы затоплено водой.

    • Морская вода при обычной её солёности 35 ‰ замерзает при температуре −1,91 °C.

    • Иногда вода замерзает при положительной температуре.

    • При определённых условиях (внутри нанотрубок) молекулы воды образуют новое состояние, при котором они сохраняют способность течь даже при температурах, близких к абсолютному нулю.

    • Среди существующих в природе жидкостей поверхностное натяжение воды уступает только ртути.

    • Вода отражает 5 % солнечных лучей, в то время как снег — около 85 %. Под лёд океана проникает только 2 % солнечного света.

    • Синий цвет чистой океанской воды объясняется избирательным поглощением и рассеянием света в воде.

    • С помощью капель воды из кранов можно накопить заряд 10 киловольт, опыт называется «Капельница Кельвина».

    • Вода — это одно из немногих веществ на Земле, которые расширяются при переходе из жидкой фазы в твердую (кроме воды, таким свойством обладают висмут, галлий и некоторые соединения и смеси).


    ВСЕМИРНЫЙ ДЕНЬ ВОДНЫХ РЕСУРСОВ

    На других официальных языках ООН: англ. WorldDay for Water, исп. Día Mundial del Agua, фр. Journée mondiale de l'eau. Отмечается ежегодно 22 марта. Этот Всемирный день объявлен Генеральной Ассамблеей ООН в 1993 году (резолюция № A/RES/47/193 Проведение Всемирного дня водных ресурсов). В резолюции Генеральной Ассамблеи предложено государствам проводить в этот день мероприятия, посвящённые сохранению и освоению водных ресурсов. Генеральная Ассамблея попросила Генерального секретаря ООН сосредоточивать ежегодные соответствующие мероприятия ООН на одной конкретной теме. В 2003 году Генеральная Ассамблея в своей резолюции № A/RES/58/217 объявила период 2005-2015 гг, начиная с Международного дня водных ресурсов 22 марта 2005 года, Международным десятилетием действий «Вода для жизни».

    13.

    Заключение

    С древних времён люди понимали огромное значение питания для здоровья. Мыслители древности (Гиппократ, Цельс, Гален и другие) посвящали целые трактаты лечебным свойствам различных видов пищи и разумному её потреблению. Выдающийся учёный Востока Абу Али Ибн Сина (Авиценна) считал пищу источником здоровья, силы, бодрости.

    Весь процесс нашей жизни - это процесс усыхания: человек, как любой овощ и фрукт при долгом хранении теряет свой внешний вид, становится сухим и  сморщенным. Остеохондроз позвоночника - прекрасный пример того, что высыхание вошло в стадию, когда желеобразная масса межпозвоночного диска превратилась в костную тонкую пластинку, а позвонки «наползли» друг на друга.

     В сутки человек теряет 1,5 - 2 литра воды. Значит, столько же ему надо выпить воды

    Воду необходимо пить  равномерно в течение дня. Не стоит компенсировать потерю воды чаем или кофе, т.к. они обладают мочегонными свойствами. Пить необходимо не дожидаясь сухости во рту, жажды (в это время уже произошло обезвоживание), не стоит пить «залпом» сразу стакан или кружку воды- лучше через равные промежутки времени(в т.ч.во время перерывов в работе) выпивать по нескольку глотков. Во время тяжелой физической нагрузки, в жарком климате и др. условиях может появиться необходимость в повышенном употреблении питьевой воды, поэтому если нет свободного доступа к питьевой воде,  то во время занятий спортом, в условиях походов, при пребывании в условиях повышенной температуры воздуха и др. необходимо иметь с собой достаточное количество питьевой воды (не использовать в этих целях сладкие газированные напитки, снабжающие организм ненужным дополнительным количеством  сахара и способствующие обезвоживанию организма). Содержание воды в пищевых продуктах должно быть определенным. Уменьшение или увеличение содержания воды влияет на качество продукта. Так, товарный вид, вкус и цвет моркови, зелени, плодов и хлеба ухудшаются при снижении влажности, а крупы, сахара и макаронных изделий - при ее увеличении. Многие продукты способны поглощать пары воды, т. е. обладают гигроскопичностью (сахар, соль, сухофрукты, сухари). Так как 1влажность влияет на питательную ценность пищевых продуктов, а также на сроки и условия хранения, она является важным показателем в оценке их качества.

    Содержание воды в пищевых продуктах в процессе их перевозки и хранения не остается постоянным. В зависимости от особенности самих продуктов, а также условий внешней среды они теряют влагу или увлажняются. Высокой гигроскопичностью (способностью поглощать влагу) обладают продукты, содержащие много фруктозы (мед, карамель), а также сушеные плоды и овощи, чай, поваренная соль.

    14.

    Эти продукты хранят при относительной влажности воздуха не выше 65-70 %

    Активность воды - один из самых критических параметров в определении качества и безопасности товаров, которые потребляются каждый день. Водная активность затрагивает срок годности, безопасность, структуру и запах пищевых продуктов. Это также жизненно важно для стабильности фармацевтических препаратов и косметики. Поскольку активность воды столь важна, необходимо измерить ее точно и быстро

    Количество воды во многих продуктах, как правило, нормируется стандартами с указанием верхнего предела ее содержания, так как от этого зависят не только качество и сохраняемость, но и пищевая ценность продуктов.

    Закончить реферат хотелось бы словами известного академика В. И. Вернадского, нет такого компонента, который мог бы "...сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества - минерала, горной породы, живого тела, которое её не включало".


    15.

    СПИСОК ЛИТЕРАТУРЫ:

    1.Лекици №3 .питание и здоровье.

    2.С.В. Зенин, Б.В. Тяглов, Г.Б.Сергеев, З.А. Шабарова. Исследование внутримолекулярных взаимодействий в нуклеотидамидах методом ЯМР. Материалы 2-й Всесоюзной конф. По динамической Стереохимии. Одесса.1975г.с.53.

    3. Масару Эмото. Послания воды: Тайные коды кристаллов льда. Перев. с англ. М. ООО Издательский дом «София».2015г.

    4. Резников К.М. Вода жизни //Прикладные информационные аспекты медицины. – 2001г. – Т.4. - №2. С.3-10.

    5. www.o8ode.ru

    6. http://ru.wikipedia.org/wiki/Воды

    7.ФБУЗ «Центр гигиены и эпидемиологии в Воронежской области». 2019г.

    8.http://labdepot.ru/lab/water1.html

    9.http://www.upack.by/articles.php

    10.http://www.giord.ru/0419205820310.php

    11.http://labdepot.ru/lab/water1.html

    16.


    написать администратору сайта